This paper presents the laminar forced convection of Al2O3–water nanofluid in a triangular channel, subjected to a constant and uniform heat flux at the slant walls, using delta-winglet pair (DWP) of vortex generator which is numerically investigated in three dimensions. The governing equations of mass, momentum, and energy are solved using the finite volume method (FVM). The nanofluid properties are estimated as constant and temperature-dependent properties. The nanoparticle concentrations and diameters are in ranges of 1–4% and 25–85 nm, respectively. Different attack angles of vortex generators are examined which are 7 deg, 15 deg, 30 deg, and 45 deg with range of Reynolds number from 100 to 2000. The results show that the heat transfer coefficient is remarkable dependent on the attack angle of vortex generators and the volume fraction of nanoparticles. The heat transfer coefficient increases as the attack angle increases from 7 deg to 30 deg and then diminishes at 45 deg. The heat transfer rate remarkably depends on the nanoparticle concentration and diameter, attack angle of vortex generator and Reynolds number. An increase in the shear stress is found when attack angle, volume fraction, and Reynolds number increase.

References

1.
Altemani
,
C. A. C.
, and
Sparrow
,
E. M.
,
1980
, “
Turbulent Heat Transfer and Fluid Flow in an Unsummertically Heated Triangular Duct
,”
ASME J. Heat Transfer
,
102
, pp.
590
597
.10.1115/1.3244357
2.
Depaiwa
,
N.
,
Chompookham
,
T.
, and
Promvonge
,
P.
,
2010
, “
Thermal Enhancement in a Solar Air Heater Channel Using Rectangular Winglet Vortex Generators
,”
International Conference on Energy and Sustainable development
, pp.
1
7
.
3.
Kotcioğlu
,
Ă
.
,
Ayhan
,
T.
,
Olgun
,
H.
, and
Ayhan
,
B.
,
1998
, “
Heat Transfer and Flow Structure in a Rectangular Channel With Wing-Type Vortex Generator
,”
J. Eng. Environ. Sci.
,
22
, pp.
185
195
.
4.
Shi
,
B.
,
Wang
,
L.
,
Gen
,
F.
, and
Zhang
,
Y.
,
2006
, “
The Optimal Fin Spacing for Three-Row Flat Tube Bank Fin Mounted With Vortex Generators
,”
J. Heat Mass Transfer
,
43
, pp.
91
101
.10.1007/s00231-006-0093-y
5.
Wang
,
C.
,
Lo
,
J.
,
Lin
,
Y.
, and
Liu
,
M.
,
2002
, “
Flow Visualization of Wave-Type Vortex Generators Having Inline Fin-Tube Arrangement
,”
Int. J. Heat Mass Transfer
,
45
, pp.
1933
1944
.10.1016/S0017-9310(01)00289-7
6.
Saidur
,
R.
,
Leong
,
K. Y.
, and
Mohammad
,
H. A.
,
2011
, “
A Review on Applications and Challenges of Nanofluids
,”
Renewable Sustainable Energy Rev.
,
15
, pp.
1646
1668
.10.1016/j.rser.2010.11.035
7.
Biswas
,
G.
, and
Chattopadhyay
,
H.
,
1992
, “
Heat Transfer in Channel With Built-in Wing-Type Vortex Generators
,”
Int. J. Heat Mass Transfer
,
35
(
4
), pp.
803
814
.10.1016/0017-9310(92)90248-Q
8.
Zhu
,
J. X.
,
Fiebig
,
M.
, and
Mitra
,
N. K.
,
1995
, “
Numerical Investigation of Turbulent Flows and Heat Transfer in a Rib-Roughened Channel With Longitudinal Vortex Generators
,”
Int. J. Heat Mass Transfer
,
38
(
3
), pp.
495
501
.10.1016/0017-9310(94)00177-W
9.
Kaniewski
,
M.
,
Hahne
,
H. W.
, and
Mitra
,
N. K.
,
1997
, “
Mass Transfer Enhancement by Longitudinal Vortices
,”
J. Heat Mass Transfer
,
32
, pp.
163
166
.10.1007/s002310050107
10.
Min
,
C.
,
Qi
,
C.
,
Kong
,
X.
, and
Dong
,
J.
,
2010
, “
Experimental Study of Rectangular Channel With Modified Rectangular Longitudinal Vortex Generators
,”
Int. J. Heat Mass Transfer
,
53
, pp.
3023
3029
.10.1016/j.ijheatmasstransfer.2010.03.026
11.
Rout
,
P. K.
, and
Saha
,
S. K.
,
2013
, “
Laminar Flow Heat Transfer and Pressure Drop in a Circular Tube Having Wire-Coil and Helical Screw-Tape Inserts
,”
ASME J. Heat Transfer
,
135
(
2
),
p. 021901
.10.1115/1.4007415
12.
Qiuwang
,
W.
,
Qiuyang
,
C.
,
Ling
,
W.
,
Min
,
Z.
,
Yanping
,
H.
, and
Zejun
,
X.
,
2007
, “
Experimental Study of Heat Transfer Enhancement in Narrow Rectangular Channel With Longitudinal Vortex Generators
,”
Nucl. Eng. Des.
,
237
, pp.
686
693
.10.1016/j.nucengdes.2006.09.003
13.
Jian
,
M.
,
Yan
,
P. H.
,
Jun
,
H.
,
Yan
,
L. W.
, and
Qiu
,
W. W.
2010
, “
Experimental Investigations on Single-Phase Heat Transfer Enhancement With Longitudinal Vortices in Narrow Rectangular Channel
,”
Nucl. Eng. Des.
,
240
, pp.
92
102
.10.1016/j.nucengdes.2009.10.015
14.
Chao
,
L.
,
Jyh-tong
,
T.
,
Jian-Cherng
,
C.
,
Yi-lang
,
C.
,
Suyi
,
H.
,
Shiping
,
J.
,
Thanhtrung
,
D.
,
Ralph
,
G.
, and
Hsin-Hung
,
P.
,
2011
, “
Experimental Investigation on Liquid Flow and Heat Transfer in Rectangular Microchannel With Longitudinal Vortex Generators
,”
Int. J. Heat Mass Transfer
,
54
, pp.
3069
3080
.10.1016/j.ijheatmasstransfer.2011.02.030
15.
Althaher
,
M. A.
,
Abdul-Rassol
,
A. A.
,
Ahmed
,
H. E.
and
Mohammed
,
H. A.
,
2012
, “
Turbulent Heat Transfer Enhancement in a Triangular Duct Using Delta-Winglet Vortex Generators
,”
Heat Transfer–Asian Res.
,
41
(
1
), pp.
43
62
.10.1002/htj.20382
16.
Luciu
,
R. S.
,
Mateecsu
,
T.
,
Cotorobai
,
V.
, and
Mare
,
T.
,
2009
, “
Nusselt Number and Convection Heat Transfer Coefficient for a Coaxial Heat Exchanger using Al2O3–Water pH = 5 Nanofluid
,”
Bul. Inst. Polit. Iaşi, t. LV (LIX), f.
,
2
, pp.
71
80
. Available at: http://www.journaldatabase.org/articles/nusselt_number_convection_heat.html
17.
Vasu
,
V.
,
Krishna
,
K. R.
, and
Kumar
,
A. C. S.
,
2008
, “
Application of Nanofluids in Thermal Design of Compact Heat Exchanger
,”
Int. J. Nanotechnol. Appl.
,
2
(
1
), pp.
75
87
. Available at: http://www.researchgate.net/publication/242312514_Application_of_Nanofluids_in_Thermal_Design_of_Compact_Heat_Exchanger
18.
Bianco
,
V.
,
Chiacchio
,
F.
,
Manca
,
O.
, and
Nardini
,
S.
,
2009
, “
Numerical Investigation of Nanofluids Forced Convection in Circular Tubes
,”
Appl. Therm. Eng.
,
29
, pp.
3632
3642
.10.1016/j.applthermaleng.2009.06.019
19.
Bianco
,
V.
,
Manca
,
O.
, and
Nardini
,
S.
,
2011
, “
Numerical Investigation on Nanofluids Turbulent Convection Heat Transfer inside a Circular Tube
,”
Int. J. Therm. Sci.
,
50
, pp.
341
349
.10.1016/j.ijthermalsci.2010.03.008
20.
Heris
,
S. Z.
,
Esfahany
,
M. N.
, and
Etemad
,
S. Gh.
,
2007
, “
Experimental Investigation of Convective Heat Transfer of Al2O3/Water Nanofluid in Circular Tube
,”
Int. J. Heat Fluid Flow
,
28
, pp.
203
210
.10.1016/j.ijheatfluidflow.2006.05.001
21.
Heris
,
S. Z.
,
Noie
,
S. H.
,
Talaii
,
E.
, and
Sargolzaei
,
J.
,
2011
, “
Numerical Investigation of Al2O3/Water Nanofluid Laminar Convective Heat Transfer Through Triangular Ducts
,”
Nanoscale Res. Lett.
,
6
, p.
179
.10.1186/1556-276X-6-179
22.
Heris
,
S.Z.
,
Talaii
,
E.
,
Noie
,
S. H.
,
2012
, “
CuO/Water Nanofluid Heat Transfer Through Triangular Ducts
,”
Iran. J. Chem. Eng.
,
9
(
1
)
23
32
.
23.
Hwang
,
K. S.
,
Jang
,
S. P.
, and
Choi
,
S. U. S.
,
2009
, “
Flow and Convective Heat Transfer Characteristics of Water-Based Al2O3 Nanofluids in Fully Developed Laminar Flow Regime
,”
Int. J. Heat Mass Transfer
,
52
, pp.
193
199
.10.1016/j.ijheatmasstransfer.2008.06.032
24.
Mapa
,
L. B.
, and
Mazhar
,
S.
,
2005
, “
Heat Transfer in Mini Heat Exchanger Using Nanofluids
,”
Conference of American Society for Engineering Education
,
DeKalb, IL
, Apr. 1–2, pp.
1
6
.
25.
Bianco
,
V.
,
Chiacchio
,
F.
,
Manca
,
O.
, and
Nardini
,
S.
,
2009
, “
Numerical Investigation of Nanofluids Forced Convection in Circular Tubes
,”
Appl. Therm. Eng.
,
29
, pp.
3632
3642
.10.1016/j.applthermaleng.2009.06.019
26.
Labonté
,
J.
,
Nguyen
,
C. T.
, and
Roy
,
G.
,
2006
, “
Heat Transfer Enhancement in Laminar Flow Using Al2O3–Water Nanofluid Considering Temperature-Dependent Properties
,”
Proceedings of the 4th WSEAS International Conference on Heat Transfer
,
Thermal Engineering and Environment
,
Elounda, Greece
, Aug. 21–23, pp.
331
336
.
27.
Palm
,
S. J.
,
Roy
,
G.
, and
Nguyen
,
C. T.
,
2006
, “
Heat Transfer Enhancement With the Use of Nanofluids in Radial Flow Cooling Systems Considering Temperature-Dependent Properties
,”
Appl. Therm. Eng.
,
26
, pp.
2209
2218
.10.1016/j.applthermaleng.2006.03.014
28.
Vajjha
,
R. S.
,
Das
,
D. K.
, and
Kulkarni
,
D. P.
,
2010
, “
Development of New Correlations for Convective Heat Transfer and Friction Factor in Turbulent Regime for Nanofluids
,”
Int. J. Heat Mass Transfer
,
53
, pp.
4607
4618
.10.1016/j.ijheatmasstransfer.2010.06.032
29.
Koo
,
J.
, and
Kleinstreuer
,
C.
,
2004
, “
A New Thermal Conductivity Model for Nanofluids
,”
J. Nanopart. Res.
,
6
, pp.
577
588
.10.1007/s11051-004-3170-5
30.
Vajjha
,
R. S.
, and
Das
,
D. K.
,
2009
, “
Experimental Determination of Thermal Conductivity of Three Nanofluids and Development of New Correlations
,”
Int. J. Heat Mass Transfer
,
52
, pp.
4675
4682
.10.1016/j.ijheatmasstransfer.2009.06.027
31.
Pak
,
B. C.
, and
Cho
,
Y. I.
,
1998
, “
Hydrodynamic and Heat Transfer Study of Dispersed Fluids With Submicron Metallic Oxide Particles
,”
Exp. Heat Transfer
,
11
(
2
), pp.
151
170
.10.1080/08916159808946559
32.
Xuan
,
Y.
, and
Roetezl
,
W.
,
2000
, “
Concepts of Heat Transfer Correlation of Nanofluids
,”
Int. J. Heat Mass Transfer
,
43
, pp.
3701
3707
.10.1016/S0017-9310(99)00369-5
33.
Lienhard
,
J. H.
, IV
, and
Lienhard
,
J. H. V
,
2011
,
Heat Transfer Textbook
,
Phlogiston Press
,
Cambridge, MA
, Appendix A.
34.
Shah
,
R. K.
, and
London
,
A. L.
,
1978
, “
Laminar Flow Forced Convection in Ducts
,”
A Source Book for compact Heat Exchanger Analytical Data
,
Academic Press, Inc.
,
New York
, Chap. VIII.
You do not currently have access to this content.