Three-dimensional turbulent forced convective heat transfer and its flow characteristics in helical rectangular ducts are simulated using SST k–ω turbulence model. The velocity field and temperature field at different axial locations along the axial direction are analyzed for different inlet Reynolds numbers, different curvatures, and torsions. The causes of heat transfer differences between the inner and outer wall of the helical rectangular ducts are discussed as well as the differences between helical and straight duct. A secondary flow is generated due to the centrifugal effect between the inner and outer walls. For the present study, the flow and thermal field become periodic after the first turn. It is found that Reynolds number can enhance the overall heat transfer. Instead, torsion and curvature change the overall heat transfer slightly. But the aspect ratio of the rectangular cross section can significantly affect heat transfer coefficient.

References

1.
Aly
,
W. I.
,
Inaba
,
H.
,
Haruki
,
N.
, and
Horibe
,
A.
,
2006
, “
Drag, and Heat Transfer Reduction Phenomena of Drag-Reducing Surfactant Solutions in Straight and Helical Pipes
,”
ASME J. Heat Transfer
,
128
(
8
), pp.
800
810
.10.1115/1.2217751
2.
Kao
,
H. C.
,
1987
, “
Torsion Effect on Fully Developed Flow in a Helical Pipe
,”
J. Fluid Mech.
,
184
, pp.
335
356
.10.1017/S002211208700291X
3.
Xin
,
R. C.
, and
Ebadian
,
M. A.
,
1997
, “
The Effects of Prandtl Numbers on Local and Average Convective Heat Transfer Characteristics in Helical Pipes
,”
ASME J. Heat Transfer
,
119
(
3
), pp.
467
473
.10.1115/1.2824120
4.
Ali
,
M. E.
,
2004
, “
Free Convection Heat Transfer From the Outer Surface of Vertically Oriented Helical Coils in Glycerol–Water Solution
,”
Heat Mass Transfer
,
40
(
8
), pp.
615
620
.10.1007/s00231-003-0431-2
5.
Wu
,
S. Y.
,
Chen
,
S. J.
,
Li
,
Y. R.
, and
Li
,
L. J.
,
2009
, “
Numerical Investigation of Turbulent Flow, Heat Transfer and Entropy Generation in a Helical Coiled Tube With Larger Curvature Ratio
,”
Heat Mass Transfer
,
45
(
5
), pp.
569
578
.10.1007/s00231-008-0458-5
6.
Pizza
,
I. D.
, and
Ciofalo
,
M.
,
2010
, “
Numerical Prediction of Turbulent Flow and Heat Transfer in Helical Coiled Pipes
,”
Intern. J. Therm. Sci.
,
49
(
1
), pp.
653
663
.10.1016/j.ijthermalsci.2009.10.001
7.
Moawed
,
M.
,
2011
, “
Experimental Study of Forced Convection From Helical Coiled Tubes With Different Parameters
,”
Energy Convers. Manage.
,
52
(
2
), pp.
1150
1156
.10.1016/j.enconman.2010.09.009
8.
Kaew-On
,
J.
,
Nakkaew
,
S.
, and
Wongwises
,
S.
,
2013
, “
Single-Phase Heat Transfer in the Straight and Helical Coiled Tubes
,”
ASME
Paper No. ICNMM2013-73109. 10.1115/ICNMM2013-73109
9.
Mandal
,
M. M.
, and
Nigam
,
K. D. P.
,
2009
, “
Experimental Study on Pressure Drop and Heat Transfer of Turbulent Flow in Tube in Tube Helical Heat Exchanger
,”
Ind. Eng. Chem. Res.
,
48
(
20
), pp.
9318
9324
.10.1021/ie9002393
10.
Mandal
,
M. M.
,
Kumar
,
V.
, and
Nigam
,
K. D. P.
,
2010
, “
Augmentation of Heat Transfer Performance in Coiled Flow Inverter vis-à-vis Conventional Heat Exchanger
,”
Chem. Eng. Sci.
,
65
(
2
), pp.
999
1007
.10.1016/j.ces.2009.09.053
11.
Woike
,
M. R.
, and
Willis
,
B. P.
,
2000
, “
Integrated Systems Testing for the Hypersonic Tunnel Facility
,”
AIAA
Paper No. 2000-2446. 10.2514/6.2000-2446
12.
Traci
,
R. M.
,
Farr
,
J. L.
, and
Laganelli
,
T.
,
2002
, “
A Thermal Management Systems Model for the NASA GTX RBCC Concept
,” NASA, Technical Report No. NASA/CR-2002-211587.
13.
Naraghi
,
M. H.
,
Pizzarelli
,
M.
, and
Champagnon
,
R.
,
2011
, “
Heat Transfer Correlations for Transitional Coolant Flow From Curved to Straight Cooling Channel Sections
,”
AIAA
Paper No. 2011-5843. 10.2514/6.2011-5843
14.
Thangam
,
S.
, and
Hur
,
N.
,
1990
, “
Laminar Secondary Flows in Curved Rectangular Ducts
,”
J. Fluid Mech.
,
217
(
1
), pp.
421
440
.10.1017/S0022112090000787
15.
Bolinder
,
C. J.
, and
Sunden
,
B.
,
1995
, “
Flow Visualization and LDV Measurements of Laminar Flow in a Helical Square Duct With Finite Pitch
,”
Exp. Therm. Fluid Sci.
,
11
(
4
), pp.
348
363
.10.1016/0894-1777(95)00040-2
16.
Bolinder
,
C. J.
,
1996
, “
First and Higher-Order Effects of Curvature and Torsion on the Flow in a Helical Rectangular Duct
,”
J. Fluid Mech.
,
314
, pp.
113
138
.10.1017/S0022112096000250
17.
Zabielski
,
L.
, and
Mestel
,
A. J.
,
1998
, “
Steady Flow a Helically Symmetric Pipe
,”
J. Fluid Mech.
,
370
, pp.
297
320
.10.1017/S0022112098002006
18.
Zabielski
,
L.
, and
Mestel
,
A.
,
2005
, “
Kinematic Dynamo Action in a Helical Pipe
,”
J. Fluid Mech.
,
535
, pp.
347
367
.10.1017/S0022112005004428
19.
Sakalis
,
V. D.
,
Hatzikonstantinou
,
P. M.
, and
Papadopoulos
,
P. K.
,
2005
, “
Numerical Procedure for the Laminar Developed Flow in a Helical Square Duct
,”
ASME J. Fluids Eng.
,
127
(
1
), pp.
136
148
.10.1115/1.1852483
20.
Egner
,
M. W.
, and
Burmeister
,
L. C.
,
2005
, “
Heat Transfer for Laminar Flow in Spiral Ducts of Rectangular Cross Section
,”
ASME J. Heat Transfer
,
127
(
3
), pp.
352
356
.10.1115/1.1857950
21.
Kurnia
,
J. C.
,
Sasmito
,
A. P.
, and
Mujumdar
,
A. S.
,
2011
, “
Evaluation of the Heat Transfer Performance of Helical Coils of Non-Circular Tubes
,”
J. Zhejiang Univ. Sci. A
,
12
(
1
), pp.
63
70
.10.1631/jzus.A1000296
22.
Mori
,
Y.
,
Uchida
,
Y.
, and
Ukon
,
T.
,
1971
, “
Forced Convective Heat Transfer in a Curved Channel With a Square Cross Section
,”
Int. J. Heat Mass Transfer
,
14
(
3
), pp.
1787
1805
.10.1016/0017-9310(71)90047-0
23.
Srinivasan
,
P. S.
,
Nandapurkar
,
S.
, and
Holland
,
F. A.
,
1970
, “
Friction Factor for Coils
,”
Trans. Inst. Chem. Eng.
,
48
(
6
), pp.
156
161
.
You do not currently have access to this content.