Gas flow through arrays of rectangular nanofins is modeled using the linearized free-molecular drag and heat transfer equations. These are combined with the one-dimensional equations for conservation of mass, momentum, and energy, and the ideal gas law, to find the governing equations for flow through the array. The results show that the pressure gradient, temperature, and local velocity of the gas are governed by coupled ordinary differential equations. The system of equations is solved for representative arrays of nanofins to find the total heat transfer and pressure drop across a 1 cm chip.
Issue Section:
Technical Briefs
References
1.
Chou
, F. C.
, Lukes
, J. R.
, and Tien
, C.-L.
, 1999
, “Heat Transfer Enhancement by Fins in the Microscale Regime
,” ASME J. Heat Transfer
, 121
, pp. 972
–977
.10.1115/1.28260882.
Maveety
, J. G.
, and Jung
, H. H.
, 2002
, “Heat Transfer From Square Pin-Fin Heat Sinks Using Air Impingement Cooling
,” IEEE Trans. Compon. Packag. Technol.
, 25
, pp. 459
–469
.10.1109/TCAPT.2002.8036503.
Egan
, V.
, Stafford
, P.
, Walsh
, P.
, and Walsh
, E.
, 2009
, “An Experimental Study on the Design of Miniature Heat Sinks for Forced Convection Air Cooling
,” ASME J. Heat Transfer
, 131
, p. 071402
.10.1115/1.31100054.
Kordás
, K.
, Tóth
, G.
, Moilanen
, P.
, Kumpumäki
, M.
, Vähäkangas
, J.
, and Uusimäki
, A.
, 2007
, “Chip Cooling With Integrated Carbon Nanotube Microfin Architectures
,” Appl. Phys. Lett.
, 90
, p. 123105
.10.1063/1.27142815.
Xu
, Y.
, Zhang
, Y.
, Suhir
, E.
, and Wang
, X.
, 2006
, “Thermal Properties of Carbon Nanotube Array Used for Integrated Circuit Cooling
,” J. Appl. Phys.
, 100
, p. 074302
.10.1063/1.23372546.
Prasher
, R. S.
, Chang
, J.-Y.
, Sauciuc
, I.
, Narasimhan
, S.
, Cha
, D.
, Chrylser
, G.
, Myers
, A.
, Prstic
, S.
, and Hu
, C.
, 2005
, “Nano and Micro-Technology-Based Next-Generation Package-Level Cooling Solutions
,” Intel Technol. J.
, 9
pp. 285
–296
.10.1535/itj.09047.
Ramanan
, S.
, and Yang
, R.
, 2009
, “Effect of Gas Rarefaction on the Performance of Submicron Fins
,” Appl. Phys. Lett.
, 94
, p. 143106
.10.1063/1.31157868.
Martin
, M., J.
, 2012
, “Gas Flow and Heat Transfer in Nanotube and Nanowire Arrays
,” Phys. Fluids
, 24
, p. 029203
.10.1063/1.36937019.
Vincenti
, W. G.
, and Kruger
, C. H.
, 1965
, Introduction to Physical Gas Dynamics
, Krieger
, Malabar, FL
.10.
Bird
, G. A.
, 1994
, Molecular Gas Dynamics and the Simulation of Gas Flows
, Clarendon
, Oxford, UK
.11.
Bhiladvala
, R. B.
, and Wang
, Z. J.
, 2004
, “Effect of Fluids on the Q Factor and Resonance Frequency of Oscillating Micrometer and Nanometer Beams
,” Phys. Rev. E
, 69
, p. 036307
.10.1103/PhysRevE.69.03630712.
Martin
, M. J.
, Houston
, B. H.
, Baldwin
, J. W.
, and Zalalutdinov
, M. K.
, 2008
, “Damping Models for Micro-Cantilevers, Bridges, and Torsional Resonators in the Free-Molecular Flow Regime
,” J. Microelectromech. Syst.
, 17
, pp. 503
–511
.10.1109/JMEMS.2008.91632113.
Martin
, M. J.
, and Houston
, B. H.
, 2009
, “Free-Molecular Heat Transfer of Vibrating Cantilever and Bridges
,” Phys. Fluids
, 21
, p. 017101
.10.1063/1.305528514.
Gombosi
, T. I.
, 1994
, Gaskinetic Theory
, Cambridge University Press
, Cambridge, UK
.15.
Arkilic
, E. B.
, Schmidt
, M. A.
, and Breuer
, K. S.
, 1997
, “Gaseous Slip Flow in Long Microchannels
,” J. Microelectromech. Syst.
, 6
, pp. 167
–178
.10.1109/84.585795Copyright © 2013 by ASME
You do not currently have access to this content.