Through the application of thin film evaporation theory and the fundamental operating principles of heat pipes, a hybrid axial groove has been developed that can greatly enhance the performance characteristics of conventional heat pipes. This hybrid axial groove is composed of a V-shaped channel connected with a circular channel through a very narrow longitudinal slot. During the operation, the V-shaped channel can provide high capillary pressure to drive the fluid flow and still maintain a large evaporative heat transfer coefficient. The large circular channel serves as the main path for the condensate return from the condenser to the evaporator and results in a very low flow resistance. The combination of a high evaporative heat transfer coefficient and a low flow resistance results in considerable enhancement in the heat transport capability of conventional heat pipes. In the present work, a detailed mathematical model for the evaporative heat transfer of a single groove has been established based on the conservation principles for mass, momentum and energy, and the modeling results quantitatively verify that this particular configuration has an enhanced evaporative heat transfer performance compared with that of conventional rectangular groove, due to the considerable reduction in the liquid film thickness and a corresponding increase in the evaporative heat transfer area in both the evaporating liquid film region and the meniscus region.

References

1.
Faghri
,
A.
,
1995
,
Heat Pipe Science and Technology
,
Taylor & Francis
,
Washington, DC
.
2.
Khrustalev
,
D.
, and
Faghri
,
A.
,
1995
, “
Thermal Characteristics of Conventional and Flat Miniature Axially Grooved Heat Pipes
,”
ASME J. Heat Transfer
,
117
(4)
, pp.
1048
1054
.10.1115/1.2836280
3.
Peterson
,
G. P.
,
1994
,
An Introduction to Heat Pipes—Modeling, Testing and Applications
,
John Wiley & Sons Inc.
,
New York
.
4.
Chi
,
S. W.
,
1976
,
Heat Pipe Theory and Practice
,
McGraw-Hill
,
New York
.
5.
Dobran
,
F.
,
1989
, “
Heat Pipe Research and Development in the Americas
,”
Heat Recovery Syst. CHP
,
9
, pp.
67
100
10.1016/0890-4332(89)90140-3
6.
Benson
,
D. A.
,
Robino
,
C. V.
, and
Palmar
,
D. W.
,
2000
, “
Heat Pipe With Improved Wick Structures
,” U.S. Patent No. 6,056,044.
7.
Zhang
,
H.
, and
Zhuang
,
J.
,
2003
, “
Research, Development and Industrial Application of Heat Pipe Technology in China
,”
Appl. Therm. Eng.
,
23
, pp.
1067
1083
.10.1016/S1359-4311(03)00037-1
8.
Vasiliev
,
L. L.
,
2005
, “
Heat Pipe in Modern Heat Exchangers
,”
Appl. Therm. Eng.
,
25
, pp.
1
19
.10.1016/j.applthermaleng.2003.12.004
9.
Vasiliev
,
L. L.
,
2008
, “
Micro and Miniature Heat Pipes–Electronic Component Coolers
,”
Appl. Therm. Eng.
,
28
, pp.
266
273
.10.1016/j.applthermaleng.2006.02.023
10.
Jankowski
,
T. A.
,
Prenger
,
F. C.
, and
Razani
,
A.
,
2008
, “
Experimental Study of a Curved Rotating Heat Pipe
,”
ASME J. Heat Transfer
,
130
(10)
, p.
101601
.10.1115/1.2953303
11.
Suman
,
B.
,
2006
, “
A Steady State Model and Maximum Heat Transport Capacity of an Electro-Hydrodynamically Augmented Micro-Grooved Heat Pipe
,”
Int. J. Heat Mass Transfer
,
49
, pp.
3957
3967
.10.1016/j.ijheatmasstransfer.2006.04.011
12.
Alario
,
J.
,
Haslett
,
R.
, and
Kosson
,
R.
,
1984
, “
Monogroove High-Performance Heat Pipe
,” AIAA Paper No. 81-1156.
13.
Alario
,
J.
,
1984
, “
Monogroove Heat Pipe Radiator Shuttle Flight Experiment: Design, Analysis and Testing
,” Warrendale, PA, SAE Paper No. 840950.
14.
Henson
,
R.
,
1998
, “
Thermohydraulic Modelling of a Monogroove Heat Pipe Condensor
,” M.S. thesis, Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC.
15.
Brown
,
R.
,
Kosson
,
R.
, and
Ungar
,
E.
,
1991
, “
Design of the SHARE II Monogroove Heat Pipe
,” AIAA Paper No. 91-1359.
16.
Schlitt
,
R.
,
1995
, “
Performance Characteristics of Recently Developed High-Performance Heat Pipes
,”
Heat Transfer Eng.
,
16
, pp.
44
52
.10.1080/01457639508939844
17.
Bryan
,
J. E.
, and
Seyed-Yagoobi
,
J.
,
1997
, “
Heat Transport Enhancement of Monogroove Heat Pipe With Electrohydrodynamic Pumping
,”
J. Thermophys. Heat Transfer
,
11
, pp.
454
460
.10.2514/2.6261
18.
Thomas
,
S. K.
, and
Damle
,
V. C.
,
2005
, “
Fluid Flow in Axial Reentrant Grooves With Application to Heat Pipes
,”
J. Thermophys. Heat Transfer
,
19
, pp.
395
405
.10.2514/1.10711
19.
Chen
,
Y.
,
Zhang
,
C.
,
Shi
,
M.
,
Wu
,
J.
, and
Peterson
,
G. P.
,
2009
, “
Study on Flow and Heat Transfer Characteristics of Heat Pipe With Axial “
Ω
”-Shaped Microgrooves
,”
Int. J. Heat Mass Transfer
,
52
, pp.
636
643
.10.1016/j.ijheatmasstransfer.2008.08.003
20.
Harwell
,
W.
,
Kaufman
,
W.
, and
Tower
,
L.
,
1977
, “
Reentrant Groove Heat Pipe
,”
Proceedings of the 12th AIAA Thermophysics Conference
, AIAA, NewYork, pp. 131–147.
21.
Dubois
,
M.
,
Mullender
,
B.
, and
Supper
,
W.
,
1997
, “
Space Qualification of High Capacity Grooved Heat Pipes
,” Society of Automotive Engineers, Warrendale, PA, SAE Paper No. 972453.
22.
Peng
,
X. F.
, and
Peterson
,
G. P.
,
1992
, “
Analysis of Rewetting for Surface Tension Induced Flow
,”
ASME J. Heat Transfer
,
114
(3)
, pp.
703
707
.10.1115/1.2911337
23.
Pratt
,
D. M.
, and
Hallinan
,
K. P.
,
1997
, “
Thermocapillary Effects on the Wetting Characteristics of a Heated Curved Meniscus
,”
J. Thermophys. Heat Transfer
,
11
, pp.
519
525
.10.2514/2.6293
24.
Wang
,
B. X.
,
Zhang
,
J. T.
, and
Peng
,
X. F.
,
2000
, “
Experimental Study on the Dryout Heat Flux of Falling Liquid Film
,”
Int. J. Heat Mass Transfer
,
43
, pp.
1897
1903
.10.1016/S0017-9310(99)00279-3
25.
Ma
,
H. B.
, and
Peterson
,
G. P.
,
1997
, “
Temperature Variation and Heat Transfer in Triangular Grooves With an Evaporating Film
,”
J. Thermophys. Heat Transfer
,
11
, pp.
90
97
.10.2514/2.6205
26.
Peng
,
X. F.
,
Peterson
,
G. P.
, and
Lu
,
X. J.
,
1993
, “
Analysis of Capillary Induced Rewetting in Circular Channels With Internal Grooves
,”
J. Thermophys. Heat Transfer
,
7
, pp.
334
339
.10.2514/3.424
27.
Ha
,
J. M.
, and
Peterson
,
G. P.
,
1996
, “
The Interline Heat Transfer of Evaporating Thin Films Along a Micro Grooved Surface
,”
ASME J. Heat Transfer
,
118
(3)
, pp.
747
755
.10.1115/1.2822695
28.
Kobayshi
,
Y.
,
Ikeda
,
S.
, and
Iwasa
,
M.
,
1996
, “
Evaporative Heat Transfer at the Evaporative Section of a Grooved Heat Pipe
,”
J. Thermophys. Heat Transfer
,
10
, pp.
83
89
.10.2514/3.756
29.
Solovy’ev
,
S. L.
, and
Kovalev
,
S. A.
,
1984
, “
Mechanism of Evaporation of a Liquid From a Porous Surface
,” 5th IHPC, Tsukuba Center for Institutes, Japan, pp. 77–82.
30.
Schonberg
,
J. A.
, and
Wayner
,
P. C.
, Jr
.,
1992
, “
Analytical Solution for the Integral Contact Line Evaporative Heat Sink
,”
J. Thermophys. Heat Transfer
,
6
, pp.
128
134
.10.2514/3.327
31.
DasGupta
,
S.
,
Schonberg
,
J. A.
, and
Wayner
,
P. C.
, Jr
.,
1993
, “
Investigation of an Evaporating Extended Meniscus Based on the Augmented Young–Laplace Equation
,”
ASME J. Heat Transfer
,
115
(1)
, pp.
201
208
.10.1115/1.2910649
32.
Qu
,
W.
,
Ma
,
T.
,
Miao
,
J.
, and
Wang
,
J.
,
2002
, “
Effects of Radius and Heat Transfer on the Profile of Evaporating Thin Liquid Film and Meniscus in Capillary Tubes
,”
Int. J. Heat Mass Transfer
,
45
, pp.
1879
1887
.10.1016/S0017-9310(01)00296-4
33.
Park
,
K.
, and
Lee
,
K.
,
2003
, “
Flow and Heat Transfer Characteristics of the Evaporating Extended Meniscus in a Micro-Capillary Channel
,”
Int. J. Heat Mass Transfer
,
46
, pp.
4587
4594
.10.1016/S0017-9310(03)00306-5
34.
Schonberg
,
J. A.
,
DasGupta
,
S.
, and
Wayner
,
P. C.
, Jr
.,
1995
, “
An Augmented Young–Laplace Model of an Evaporating Meniscus in a Microchannel With High Heat Flux
,”
Exp. Therm. Fluid Sci.
,
10
, pp.
163
170
.10.1016/0894-1777(94)00085-M
35.
Schonberg
,
J.
, and
Wayner
,
P.
,
1992
, “
An Analytical Solution for the Integral Contact Line Evaporative Heat Sink
,”
J. Thermophysics Heat Transfer
,
6
, pp.
128
134
.10.2514/3.327
You do not currently have access to this content.