The flow of thin falling liquid films is unstable to long-wave disturbances. The flow instability leads to development of waves at the liquid–gas interface. The effect of the waves on heat and mass transfer in falling liquid films is a subject of ongoing scientific discussion. In this work, numerical investigation of the wave dynamics has been performed using a modified volume-of-fluid (VOF) method for tracking the free surface. The surface tension is described using the continuum surface force (CSF) model. With low disturbance frequency, solitary waves of large amplitude are developed, which are preceded by low-amplitude capillary waves. With high disturbance frequency, low amplitude sinusoidal waves are developed. The waveforms dependent on the Reynolds number and disturbance frequency are summarized in a form of a regime map. A correlation describing the separation curve between the sinusoidal waves regime and solitary waves regime is proposed. The wave parameters (peak height, length, and propagation speed) are computed from the simulation results and compared with available experimental correlations in a wide range of parameters. The effects of the disturbance frequency and the plane inclination angle on the wave dynamics have been studied. The interaction of waves initiated by simultaneous disturbances of two different frequencies has been investigated. The heat transfer in the wavy film has been simulated for the constant wall temperature boundary condition. The effects of Prandtl number and disturbance frequency on local and global heat transfer parameters have been investigated. It has been shown that the influence of waves on heat transfer is significant for large Prandtl numbers in a specific range of disturbance frequencies.

References

1.
Benjamin
,
T. B.
,
1957
, “
Wave Formation in Laminar Flow Down an Inclined Plane
,”
J. Fluid Mech.
,
2
, pp.
554
574
.10.1017/S0022112057000373
2.
Yih
,
C.-S.
,
1955
, “
Stability of Parallel Laminar Flow With a Free Surface
,”
Q. Appl. Math.
,
13
, pp.
434
439
.
3.
Yih
,
C.-S.
,
1963
, “
Stability of Liquid Flow Down an Inclined Plane
,”
Phys. Fluids
,
6
(
3
), pp.
321
334
.10.1063/1.1706737
4.
Kapitza
,
P. L.
, and
Kapitza
,
S. P.
,
1964
, “
Wave Flow in Thin Layers of a Viscous Fluid
,”
Collected Papers of P. L. Kapitza
, Vol.
40
,
D.
ter Haar
, ed.,
The Macmillan Company
,
New York
.
5.
Liu
,
J.
,
Paul
,
J. D.
, and
Gollub
,
J. P.
,
1993
, “
Measurements of the Primary Instabilities of Film Flows
,”
J. Fluid Mech.
,
250
, pp.
69
101
.10.1017/S0022112093001387
6.
Liu
,
J.
, and
Gollub
,
J. P.
,
1994
, “
Solitary Wave Dynamics of Film Flows
,”
Phys. Fluids
,
6
, pp.
1702
1712
.10.1063/1.868232
7.
Nosoko
,
T.
,
Yoshimura
,
P. N.
,
Nagata
,
T.
, and
Oyakawa
,
K.
,
1996
, “
Characteristics of Two-Dimensional Waves on a Falling Liquid Film
,”
Chem. Eng. Sci.
,
51
, pp.
725
732
.10.1016/0009-2509(95)00292-8
8.
Nosoko
,
T.
, and
Miyara
,
A.
,
2004
, “
The Evolution and Subsequent Dynamics of Waves on a Vertically Falling Liquid Film
,”
Phys. Fluids
,
16
, pp.
1118
1126
.10.1063/1.1650840
9.
Chang
,
H.-C.
,
1994
, “
Wave Evolution on a Falling Film
,”
Annu. Rev. Fluid Mech.
,
26
, pp.
103
136
.10.1146/annurev.fl.26.010194.000535
10.
Alekseenko
,
S. V.
,
Nakoryakov
,
V. E.
, and
Pokusaev
,
B. G.
,
1994
,
Wave Flow of Liquid Films
,
Begell House
,
New York
.
11.
Chang
,
H.-C.
,
Demekhin
,
E. A.
, and
Kopelevich
,
D. I.
,
1993
, “
Nonlinear Evolution of Waves on a Vertical Falling Film
,”
J. Fluid Mech.
,
250
, pp.
433
480
.10.1017/S0022112093001521
12.
Trifonov
,
Y. Y.
, and
Tsvelodub
,
O. Y.
,
1991
, “
Nonlinear Waves on the Surface of a Falling Liquid Film. Part 1, Waves of the First Family and Their Stability
,”
J. Fluid Mech.
,
229
, pp.
531
554
.10.1017/S0022112091003154
13.
Tsvelodub
,
O. Y.
, and
Trifonov
,
Y. Y.
,
1992
, “
Nonlinear Waves on the Surface of a Falling Liquid Film. Part 2, Bifurcations of the First-Family Waves and Other Types of Nonlinear Waves
,”
J. Fluid Mech.
,
244
, pp.
149
169
.10.1017/S0022112092003008
14.
Alekseenko
,
S. V.
,
Nakoryakov
,
V. Ye.
, and
Pokusaev
,
B. G.
,
1985
, “
Wave Formation on a Vertical Falling Liquid Film
,”
AIChE J.
,
31
, pp.
1446
1460
.10.1002/aic.690310907
15.
Ruyer-Quil
,
C.
, and
Manneville
,
P.
,
2000
, “
Improved Modelling of Flows Down Inclined Planes
,”
Eur. Phys. J. B
,
15
, pp.
357
369
.10.1007/s100510051137
16.
Scheid
,
B.
,
Ruyer-Quil
,
C.
, and
Manneville
,
P.
,
2006
, “
Wave Patterns in Film Flows: Modelling and Three-Dimensional Waves
,”
J. Fluid Mech.
,
562
, pp.
183
222
.10.1017/S0022112006000978
17.
Miyara
,
A.
,
2000
, “
Numerical Simulation of Wavy Liquid Film Flowing Down on a Vertical Wall and an Inclined Wall
,”
Int. J. Therm. Sci.
,
39
, pp.
1015
1027
.10.1016/S1290-0729(00)01192-3
18.
Harlow
,
F. H.
, and
Welch
,
J. E.
,
1965
, “
Numerical Calculation of Time-Dependent Viscous Incompressible Flow of Fluid With Free Surface
,”
Phys. Fluids
,
8
, pp.
2182
2189
.10.1063/1.1761178
19.
Ramaswamy
,
B.
,
Chippada
,
S.
, and
Joo
,
S. W.
,
1996
, “
A Full-Scale Numerical Study of Interfacial Instabilities in Thin-Film Flows
,”
J. Fluid Mech.
,
325
, pp.
163
194
.10.1017/S0022112096008075
20.
Gao
,
D.
,
Morley
,
N. B.
, and
Dhir
,
V.
,
2003
, “
Numerical Simulation of Wavy Falling Film Flow Using VOF Method
,”
J. Comput. Phys.
,
192
, pp.
624
642
.10.1016/j.jcp.2003.07.013
21.
Hirt
,
C. W.
, and
Nichols
,
B. D.
,
1981
, “
Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries
,”
J. Comput. Phys.
,
39
, pp.
201
225
.10.1016/0021-9991(81)90145-5
22.
Brackbill
,
J. U.
,
Kothe
,
D. B.
, and
Zemach
,
C.
,
1992
, “
A Continuum Method for Modelling Surface Tension
,”
J. Comput. Phys.
,
100
, pp.
335
354
.10.1016/0021-9991(92)90240-Y
23.
Seban
,
R. A.
, and
Faghri
,
A.
,
1978
, “
Wave Effects on the Transport to Falling Laminar Liquid Films
,”
ASME J. Heat Transfer
,
100
, pp.
143
147
.10.1115/1.3450488
24.
Miyara
,
A.
,
1999
, “
Numerical Analysis on Flow Dynamics and Heat Transfer of Falling Liquid Films With Interfacial Waves
,”
Heat Mass Transfer
,
35
, pp.
298
306
.10.1007/s002310050328
25.
Dietze
,
G. F.
, and
Kneer
,
R.
,
2011
, “
Flow Separation in Falling Liquid Films
,”
Front. Heat Mass Transfer
,
2
, p.
033001
.10.5098/hmt.v2.3.3001
26.
Nusselt
,
W.
,
1916
, “
Die Oberflächenkondensation des Wasserdampfes
,”
VDI. Z.
,
60
, pp.
541
546
.
27.
Ferziger
,
J. H.
, and
Peric
,
M.
,
2002
,
Computational Methods for Fluid Dynamics
, 3rd ed.,
Springer
,
Heidelberg
.
28.
Jasak
,
H.
,
1996
, “
Error Analysis and Estimation for the Finite Volume Method With Applications to Fluid Flows
,” Ph.D. thesis, Imperial College of Science, Technology and Medicine, London.
29.
Rusche
,
H.
,
2002
, “
Computational Fluid Dynamics of Dispersed Two-Phase Flows at High Phase Fractions
,” Ph.D. thesis, Imperial College of Science, Technology and Medicine, London.
30.
Cerne
,
G.
,
Petelin
,
S.
, and
Tiselj
,
I.
,
2001
, “
Coupling of the Interface Tracking and the Two-Fluid Models for the Simulation of Incompressible Two-Phase Flow
,”
J. Comput. Phys.
,
171
, pp.
776
804
.10.1006/jcph.2001.6810
31.
Dietze
,
G. F.
,
Leefken
,
A.
, and
Kneer
,
R.
,
2008
, “
Investigation of the Backflow Phenomenon in Falling Liquid Films
,”
J. Fluid Mech.
,
595
, pp.
435
459
.10.1017/S0022112007009378
You do not currently have access to this content.