This work is aimed at cooling small surfaces (1.3 mm × 2 mm and 3 mm × 5 mm) using spray from thermal ink jet (TIJ) atomizers. Particular interests in this work include obtaining heat fluxes near the critical heat flux (CHF), understanding the correlation between the heat dissipation efficiency (η) and the liquid film thickness (δ) through experimental data, and understanding the primary mode of heat transfer on spray cooling at different liquid film thickness. Current experimental results indicate that high heat fluxes (∼4 × 107 W/m2) are obtained for controlled conditions of cooling mass flow rate, higher efficiencies are achieved at smaller liquid film thickness (δ ≈ 5 μm → η ≈ 0.9), and the heat transfer by conduction through the film becomes dominant as δ decreases.

References

1.
Krishnan
,
S.
,
Garimella
,
S. V.
,
Chrysler
,
G. M.
, and
Mahajan
,
R. V.
,
2007
, “
Towards a Thermal Moore's Law
,”
IEEE Trans. Adv. Packag.
,
30
(
3
),
pp.
462
474
.10.1109/TADVP.2007.898517
2.
Schmidt
,
R.
,
2000
, “
Low Temperature Electronic Cooling
,”
Electronics Cooling
,
6
(
3
),
pp.
18
24
.
3.
Bar-Cohen
,
A.
, and
Wang
,
P.
,
2009
, “
Thermal Management of On-Chip Hot Spot
,” Proceedings of the
ASME
Micro/Nanoscale Heat and Mass Transfer International Conference,
Shanghai
,
pp.
553
567
. 10.1115/MNHMT2009-18548
4.
Snyder
,
G. J.
,
Soto
,
M.
,
Alley
,
R.
,
Koester
,
D.
, and
Conner
,
B.
,
2006
, “
Hot Spot Cooling Using Embedded Thermoelectric Coolers
,” Proceedings of the 22nd
IEEE
SEMI-THERM Symposium,
Dallas
,
pp.
135
143
. 10.1109/STHERM.2006.1625219
5.
Sawan
,
M. E.
, and
Carbon
,
M. W.
,
1975
, “
A Review of Spray-Cooling and Bottom-Flooding Work for LWR Cores
,”
Nucl. Eng. Des.
,
32
(
2
),
pp.
191
207
.10.1016/0029-5493(75)90130-2
6.
Mudawar
,
I.
,
2001
, “
Assessment of High-Heat-Flux Thermal Management Schemes
,”
IEEE Trans. Compon. Packag. Technol.
,
24
(
2
),
pp.
122
141
.10.1109/6144.926375
7.
Agostini
,
B.
,
Fabbri
,
M.
,
Park
,
J.
,
Wojtan
,
L.
,
Thome
,
J.
, and
Michel
,
B.
,
2007
, “
State of the Art of High Heat Flux Cooling Technologies
,”
Heat Transfer Eng.
,
28
(
4
),
pp.
258
281
.10.1080/01457630601117799
8.
Escobar-Vargas
,
S.
,
Fabris
,
D.
,
Gonzalez
,
J. E.
,
Sharma
,
R.
, and
Bash
,
C.
,
2007
, “
High Power Density Dissipations by Spray Cooling
,” Proceedings of the
ASME
/JSME Thermal Engineering and Summer Heat Transfer Conference,
Vancouver
,
Paper No. HT2007-32442
. 10.1115/HT2007-32442
9.
Ortiz
,
L.
, and
Gonzalez
,
J.
,
1999
, “
Experiments on Steady State High Heat Fluxes Using Spray Cooling
,”
Exp. Heat Transfer
,
12
(
3
),
pp.
215
233
.10.1080/089161599269690
10.
Lin
,
S.
, and
Banerjee
,
K.
,
2008
, “
Cool Chips: Opportunities and Implications for Power and Thermal Management
,”
IEEE Trans. Electron Devices
,
55
(
1
),
pp.
245
255
.10.1109/TED.2007.911763
11.
Pais
,
M.
,
Chow
,
L.
, and
Mahefkey
,
E.
,
1992
, “
Surface Roughness and Its Effects on the Heat Transfer Mechanism in Spray Cooling
,”
ASME J. Heat Transfer
,
114
,
pp.
211
219
.10.1115/1.2911248
12.
Silk
,
E.
,
Kim
,
J.
, and
Kiger
,
K.
,
2007
, “
Energy Conservation Based Spray Cooling CHF Correlation for Flat Surface Small Area Heaters
,” Proceedings of the
ASME
/JSME Thermal Engineering Summer Heat Transfer Conference,
Vancouver
,
Paper No. HT2007-32813
. 10.1115/HT2007-32813
13.
Shedd
,
T. A.
, and
Pautsch
,
A. G.
,
2005
, “
Spray Impingement Cooling With Single- and Multiple-Nozzle Arrays. Part II: Visualization and Empirical Models
,”
Int. J. Heat Mass Transfer
,
48
(
15
),
pp.
3176
3184
.10.1016/j.ijheatmasstransfer.2005.02.013
14.
Sharma
,
R.
,
Bash
,
C.
, and
Patel
,
C.
,
2004
, “
Experimental Investigation of Heat Transfer Characteristics of Inkjet Assisted Spray Cooling
,” Proceedings of the
ASME
Heat Transfer/Fluids Engineering Summer Conference,
Charlotte
,
Paper No. HT-FED2004-56183
. 10.1115/HT-FED2004-56183
15.
Estes
,
K.
, and
Mudawar
,
I.
,
1995
, “
Correlation of Sauter Mean Diameter and Critical Heat Flux for Spray Cooling of Small Surfaces
,”
Int. J. Heat Mass Transfer
,
38
(
16
),
pp.
2985
2996
.10.1016/0017-9310(95)00046-C
16.
Visaria
,
M.
, and
Mudawar
,
I.
,
2008
, “
Effects of High Subcooling on Two-Phase Spray Cooling and Critical Heat Flux
,”
Int. J. Heat Mass Transfer
,
51
(
21–22
),
pp.
5269
5278
.10.1016/j.ijheatmasstransfer.2008.02.045
17.
Hsu
,
Y.
,
1962
, “
On the Size Range of Active Nucleation Cavities on a Heating Surface
,”
ASME J. Heat Transfer
,
84
,
pp.
207
213
.10.1115/1.3684339
18.
Kim
,
J.
,
2006
, “
Spray Cooling Heat Transfer: The State of the Art
,”
Int. J. Heat Fluid Flow
,
28
(
4
),
pp.
753
767
.10.1016/j.ijheatfluidflow.2006.09.003
19.
Horacek
,
B.
,
Kiger
,
K.
, and
Kim
,
J.
,
2005
, “
Single Nozzle Spray Cooling Heat Transfer Mechanisms
,”
Int. J. Heat Mass Transfer
,
48
(
8
),
pp.
1425
1438
.10.1016/j.ijheatmasstransfer.2004.10.026
20.
Wayner
,
P. C.
,
1994
, “
Thermal and Mechanical Effects in the Spreading of a Liquid Film Due to a Change in the Apparent Finite Contact Angle
,”
ASME J. Heat Transfer
,
116
,
pp.
938
945
.10.1115/1.2911469
21.
Stephan
,
P.
, and
Hammer
,
J.
,
1994
, “
A New Model for Nucleate Boiling Heat Transfer
,”
Wärme und Stoffübertragung
,
30
(
2
),
pp.
119
125
.
22.
Nishio
,
S.
,
Gotoh
,
T.
, and
Nagai
,
N.
,
1998
, “
Observation of Boiling Structures in High Heat-Flux Boiling
,”
Int. J. Heat Mass Transfer
,
41
(
21
),
pp.
3191
3201
.10.1016/S0017-9310(98)00062-3
23.
Lüttich
,
T.
,
Marquart
,
W.
,
Buchholz
,
M.
, and
Auracher
,
H.
,
2004
, “
Towards a Unifying Heat Transfer Correlation for the Entire Boiling Curve
,”
Int. J. Therm. Sci.
,
43
(
12
),
pp.
1125
1139
.10.1016/j.ijthermalsci.2004.04.014
24.
Auracher
,
H.
, and
Marquardt
,
W.
,
2004
, “
Heat Transfer Characteristics and Mechanisms Along Entire Boiling Curves Under Steady-State and Transient Conditions
,”
Int. J. Heat Fluid Flow
,
25
(
2
),
pp.
223
242
.10.1016/j.ijheatfluidflow.2003.11.011
25.
Rini
,
D. P.
,
Chen
,
R. H.
, and
Chow
,
L. C.
,
2002
, “
Bubble Behavior and Nucleate Boiling Heat Transfer in Saturated FC-72 Spray Cooling
,”
ASME J. Heat Transfer
,
124
(
1
),
pp.
63
72
.10.1115/1.1418365
26.
Selvam
,
R.
,
Lin
,
L.
, and
Ponnappan
,
R.
,
2006
, “
Direct Simulation of Spray Cooling: Effect of Vapor Bubble Growth and Liquid Droplet Impact on Heat Transfer
,”
Int. J. Heat Mass Transfer
,
49
(
23-24
),
pp.
4265
4278
.10.1016/j.ijheatmasstransfer.2006.05.009
27.
Selvam
,
R.
, and
Sarkar
,
S.
,
2007
, “
Understanding High Heat Transfer in Spray Cooling for Different Droplet Velocities and Wall Superheats by 3D Multiphase Flow Modeling
,” Proceedings of the
ASME
/JSME Thermal Engineering Summer Heat Transfer Conference,
Vancouver
,
Paper No. HT2007-32313
. 10.1115/HT2007-32313
28.
Rein
,
M.
,
1993
, “
Phenomena of Liquid Drop Impact on Solid and Liquid Surfaces
,”
Fluid Dyn. Res.
,
12
(
2
),
pp.
61
93
.10.1016/0169-5983(93)90106-K
29.
Mundo
,
C.
,
Sommerfeld
,
M.
, and
Tropea
,
C.
,
1995
, “
Droplet Wall Collisions: Experimental Studies of the Deformation and Breakup Process
,”
Int. J. Multiphase Flow
,
21
(
2
),
pp.
151
173
.10.1016/0301-9322(94)00069-V
30.
Castanet
,
G.
,
Lienart
,
T.
, and
Lemoine
,
F.
,
2009
, “
Dynamics and Temperature of Droplets Impacting Onto a Heated Wall
,”
Int. J. Heat Mass Transfer
,
52
(
3-4
),
pp.
670
679
.10.1016/j.ijheatmasstransfer.2008.07.024
31.
Harlow
,
F.
, and
Shannon
,
J.
,
1967
, “
The Splash of a Liquid Drop
,”
J. Appl. Phys.
,
38
(
10
),
pp.
3855
3866
.10.1063/1.1709031
32.
Josseranda
,
C.
, and
Zaleskib
,
S.
,
2003
, “
Droplet Splashing on a Thin Liquid Film
,”
Phys. Fluids
,
15
(
6
),
pp.
1650
1657
.10.1063/1.1572815
33.
Escobar-Vargas
,
S.
,
Gonzalez
,
J.
,
Ruiz
,
O.
,
Bash
,
C.
,
Sharma
,
R.
, and
Fabris
,
D.
,
2009
, “
Near Critical Heat Flux From Small Substrates Under Controlled Spray Cooling
,” Proceedings of the
ASME
Summer Heat Transfer Conference,
San Francisco
,
Paper No. HT2009-88281
. 10.1115/HT2009-88281
34.
Mudawar
,
I.
, and
Valentine
,
W. S.
,
1989
, “
Determination of the Local Quench Curve for Spray-Cooled Metallic Surfaces
,”
J. Heat Treating
,
7
(
2
),
pp.
107
121
.10.1007/BF02833195
35.
Cabrera
,
E.
, and
Gonzalez
,
J.
,
2003
, “
Heat Flux Correlation for Spray Cooling in the Nucleate Boiling Regime
,”
Exp. Heat Transfer
,
16
(
1
),
pp.
19
44
.10.1080/08916150390126450
36.
Amon
,
C.
,
Murthy
,
J.
,
Yao
,
S. C.
,
Narumanchi
,
S.
,
Wu
,
C.
, and
Hsieh
,
C.
,
2001
, “
MEMS-Enabled Thermal Management of High-Heat-Flux Devices EDIFICE: Embedded Droplet Impingement for Integrated Cooling of Electronics
,”
Exp. Therm. Fluid Sci.
,
25
(
5
),
pp.
231
242
.10.1016/S0894-1777(01)00071-1
37.
Xia
,
C.
,
2002
, “
Spray/Jet Cooling for Heat Flux High to 1 kW/cm2
,” Proceedings of the 18th
IEEE
SEMI-THERM Symposium,
San Jose
,
pp.
159
163
. 10.1109/STHERM.2002.991362
38.
Pautsch
,
A. G.
,
Shedd
,
T. A.
, and
Nellis
,
G. F.
,
2004
, “
Thickness Measurements of the Thin Film in Spray Evaporative Cooling
,” Proceedings of the 9th Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems,
IEEE
,
pp.
70
76
. 10.1109/ITHERM.2004.1319156
39.
Pautsch
,
A. G.
, and
Shedd
,
T. A.
,
2004
, “
Correlation of Heat Transfer Data to Film Thickness Data of the Thin Film Found in Spray Cooling
,” Proceedings of the
ASME
, Advanced Energy Systems Division,
Anaheim
,
pp.
525
531
. 10.1115/IMECE2004-62350
40.
Sawyer
,
M. L.
,
Jeter
,
S. M.
, and
Abdel-Khalik
,
S. I.
,
1997
, “
A Critical Heat Flux Correlation for Droplet Impact Cooling
,”
Int. J. Heat Mass Transfer
,
40
(
9
),
pp.
2123
2131
.10.1016/S0017-9310(96)00267-0
41.
Halvorson
,
P. J.
,
Carson
,
R. J.
,
Jeter
,
S. M.
, and
Abdel-Khalik
,
S. I.
,
1994
, “
Critical Heat Flux Limits for a Heated Surface Impacted by a Stream of Liquid Droplets
,”
ASME J. Heat Transfer
,
116
(
3
),
pp.
679
685
.10.1115/1.2910922
42.
Cossali
,
G.
,
Marengo
,
M.
, and
Santini
,
M.
,
2005
, “
Single-Drop Empirical Models for Spray Impact on Solid Walls: A Review
,”
Atomization Sprays
,
15
,
pp.
699
736
.10.1615/AtomizSpr.v15.i6.50
43.
Bai
,
C.
, and
Gosman
,
A.
,
1996
, “
Mathematical Modelling of Wall Films Formed by Impinging Sprays
,”
SAE
Paper No. 960626
. 10.4271/960626
44.
Samenfink
,
W.
,
1997
, “
Grundlegende Untersuchung Zur Tropfeninteraktion Mit Schubspannungsgetriebenen Wandfilmen
,”
Ph.D. thesis
,
Universität Karlsruhe
,
Karlsruhe, Germany
.
45.
Marengo
,
M.
, and
Tropea
,
C.
,
1999
, “
Aufprall Von Tropfen Auf Flüssigkeitsfilme
,”
DFG, Berlin, Zwischenbericht zum Forschungsvorhaben 194
,
pp.
10
18
.
46.
Bai
,
C.
, and
Gosman
,
A.
,
1995
, “
Development of a Methodology for Spray Impingement Simulation
,”
SAE
Paper No. 950283. 10.4271/950283
47.
Lee
,
S.
, and
Ryu
,
S.
,
2006
, “
Recent Progress of Spray-Wall Interaction Research
,”
J. Mech. Sci. Technol.
,
20
(
8
),
pp.
1101
1118
.10.1007/BF02916010
48.
Moreira
,
A.
,
Moita
,
A.
, and
Panão
,
M.
,
2010
, “
Advances and Challenges in Explaining Fuel Spray Impingement: How Much of Single Droplet Impact Research Is Useful?
,”
Prog. Energy Combust. Sci.
,
36
,
pp.
554
580
.10.1016/j.pecs.2010.01.002
49.
Fabris
,
D.
,
Escobar-Vargas
,
S.
,
Gonzalez
,
J. E.
,
Sharma
,
R.
, and
Bash
,
C.
,
2010
, “
Monodisperse Spray Cooling of Small Surface Areas at High Heat Flux
,”
Proceedings of the 7th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics
,
Antalya
,
pp.
961
965
.
50.
Fabris
,
D.
,
Escobar-Vargas
,
S.
,
Gonzalez
,
J.
,
Sharma
,
R.
, and
Bash
,
C.
,
2012
, “
Monodisperse Spray Cooling of Small Surface Areas at High Heat Flux
,”
Heat Transfer Eng.
,
33
(
14
), pp.
1161
1169
. 10.1080/01457632.2012.677686
51.
Sellers
,
S.
, and
Black
,
W.
,
2008
, “
Boiling Heat Transfer Rates for Small Precisely Placed Water Droplets on a Heated Horizontal Plate
,”
ASME J. Heat Transfer
,
130
, p.
054504
.10.1115/1.2884183
52.
Incropera
,
F. P.
, and
DeWitt
,
D. P.
,
2002
,
Fundamentals of Heat and Mass Transfer
, 5th ed.,
John Wiley & Sons
,
New York
.
53.
Ruiz
,
O.
,
2000
, “
Numerical Analysis of the Dropwise Evaporation Process
,”
Ph.D. thesis
,
Georgia Institute Technology
,
Atlanta, GA
.
You do not currently have access to this content.