Fully developed forced convective heat transfer in a parallel-plate channel partially filled with highly porous, open-celled metallic foam is analytically investigated. The Navier–Stokes equation for the hollow region is connected with the Brinkman–Darcy equation in the foam region by the flow coupling conditions at the porous–fluid interface. The energy equation for the hollow region and the two energy equations of solid and fluid for the foam region are linked by the heat transfer coupling conditions. The normalized closed-form analytical solutions for velocity and temperature are also obtained to predict the flow and temperature fields. The explicit expression for Nusselt number is also obtained through integration. A parametric study is conducted to investigate the influence of different factors on the flow resistance and heat transfer performance. The analytical solution can provide useful information for related heat transfer enhancement with metallic foams and establish a benchmark for similar work.

References

1.
Webb
,
R. L.
, and
Kim
,
N. H.
, 1994,
Principles of Enhanced Heat Transfer
, 2nd ed.,
Wiley
,
New York
.
2.
Wang
,
Q. W.
,
Lin
,
M.
, and
Zeng
,
M.
, 2009, “
Effect of Lateral Fin Profiles on Turbulent Flow and Heat Transfer Performance of Internally Finned Tubes
,”
Appl. Therm. Eng.
,
29
(
14–15
), pp.
3006
3013
.
3.
Almeida
,
J. A.
, and
Mendes
,
P. R.
, 1992, “
Local and Average Transport Coefficients for the Turbulent Flow in Internally Ribbed Tubes
,”
Exp. Therm. Fluid Sci.
,
5
(
4
), pp.
513
523
.
4.
Evtushenko
,
I. A.
,
Hua
,
T. Q.
,
Kirillov
,
I. R.
,
Reed
,
C. B.
, and
Sidorenkov
,
S. S.
, 1995, “
The Effect of a Magnetic Field on Heat Transfer in a Slotted Channel
,”
Fusion Eng. Des.
,
27
(
1
), pp.
587
592
.
5.
Wei
,
J. J.
,
Gu
,
L. J.
, and
Honda
,
H.
, 2005, “
Experimental Study of Boiling Phenomena and Heat Transfer Performances of FC-72 Over Micro-Pin-Finned Silicon Chips
,”
Heat Mass Transfer.
,
41
(
8
), pp.
744
755
.
6.
Nield
,
D. A.
, and
Bejan
,
A.
, 1992,
Convection in Porous Media
, 2nd ed.,
Springer
,
New York
.
7.
Lu
,
T. J.
,
Stone
,
H. A.
, and
Ashby
,
M. F.
, 1998, “
Heat Transfer in Open-Cell Metal Foams
,”
Acta Mater.
,
46
(
10
), pp.
3619
3635
.
8.
Calmidi
,
V. V.
, and
Mahajan
,
R. L.
, 2000, “
Forced Convection in High Porosity Metal Foams
,”
ASME J. Heat Transfer
,
122
(
3
), pp.
557
565
.
9.
Zhao
,
C. Y.
,
Kim
,
T.
,
Lu
,
T. J.
, and
Hodson
,
H. P.
, 2004, “
Thermal Transport in High Porosity Cellular Metal Foams
,”
AIAA J. Thermophys. Heat Transfer
,
18
(
3
), pp.
309
317
.
10.
Lu
,
W.
,
Zhao
,
C. Y.
, and
Tassou
,
S. A.
, 2006, “
Thermal Analysis on Metal-Foam Filled Heat Exchangers. Part I: Metal-Foam Filled Pipes
,”
Int. J. Heat Mass Transfer
,
49
(
15–16
), pp.
2751
2761
.
11.
Zhao
,
C. Y.
,
Lu
,
W.
, and
Tassou
,
S. A.
, 2006, “
Thermal Analysis on Metal-Foam Filled Heat Exchangers. Part II: Tube Heat Exchangers
,”
Int. J. Heat Mass Transfer
,
49
(
15–16
), pp.
2762
2770
.
12.
Mahjoob
,
S.
, and
Vafai
,
K.
, 2010, “
Analysis of Bioheat Transport Through a Dual Layer Biological Media
,”
ASME J. Heat Transfer
,
132
(
3
),
031101
.
13.
Yang
,
K.
, and
Vafai
,
K.
, 2010, “
Analysis of Temperature Gradient Bifurcation in Porous Media—An Exact Solution
,”
Int. J. Heat Mass Transfer
,
53
(
19–20
), pp.
4316
4325
.
14.
Chandesris
,
M.
, and
Jamet
,
D.
, 2006, “
Boundary Conditions at a Planar Fluid–Porous Interface for a Poiseuille Flow
,”
Int. J. Heat Mass Transfer
,
49
(
13–14
), pp.
2137
2150
.
15.
Vafai
,
K.
, and
Kim
,
S. J.
, 1990, “
Analysis of Surface Enhancement by a Porous Substrate
,”
ASME J. Heat Transfer
,
112
(
3
), pp.
700
706
.
16.
Vafai
,
K.
, and
Thiyagaraja
,
R.
, 1987, “
Analysis of Flow and Heat Transfer at the Interface Region of a Porous Medium
,”
Int. J. Heat Mass Transfer
,
30
(
7
), pp.
1391
1405
.
17.
Poulikakos
,
D.
, and
Kazmierczak
,
M.
, 1987, “
Forced Convection in Duct Partially Filled With a Porous Material
,”
ASME J. Heat Transfer
,
109
(
3
), pp.
653
662
.
18.
Chikh
,
S.
,
Boumedien
,
A.
,
Bouhadef
,
K.
, and
Lauriat
,
G.
, 1995, “
Analytical Solution of Non-Darcian Forced Convection in an Annular Duct Partially Filled With a Porous Medium
,”
Int. J. Heat Mass Transfer
,
38
(
9
), pp.
1543
1551
.
19.
Lee
,
D. Y.
, and
Vafai
,
K.
, 1999, “
Analytical Characterization and Conceptual Assessment of Solid and Fluid Temperature Differentials in Porous Media
,”
Int. J. Heat Mass Transfer
,
42
(
21
), pp.
423
435
.
20.
Alazmi
,
B.
, and
Vafai
,
K.
, 2001, “
Analysis of Fluid Flow and Heat Transfer Interfacial Conditions Between a Porous Medium and a Fluid Layer
,”
Int. J. Heat Mass Transfer
,
44
(
9
), pp.
1735
1749
.
21.
Ochoa-Tapia
,
J. A.
, and
Whitaker
,
S.
, 1995, “
Momentum Transfer at the Boundary Between a Porous Medium and a Homogeneous Fluid—I: Theoretical Development
,”
Int. J. Heat Mass Transfer
,
38
(
14
), pp.
2635
2646
.
22.
Ochoa-Tapia
,
J. A.
, and
Whitaker
,
S.
, 1995, “
Momentum Transfer at the Boundary Between a Porous Medium and a Homogeneous Fluid—II: Comparison With Experiment
,”
Int. J. Heat Mass Transfer
,
38
(
14
), pp.
2647
2655
.
23.
Vafai
,
K.
, and
Kim
,
S. J.
, 1995, “
On the Limitations of the Brinkman-Forchheimer-Extended Equation
,”
Int. J. Heat and Fluid Flow
,
16
(
1
), pp.
11
15
.
24.
Ochoa-Tapia
,
J. A.
, and
Whitaker
,
S.
, 1997, “
Heat Transfer at the Boundary Between a Porous Medium and a Homogeneous Fluid
,”
Int. J. Heat Mass Transfer
,
40
(
11
), pp.
2691
2707
.
25.
Phanikumar
,
M. S.
, and
Mahajan
,
R. L.
, 2002, “
Non-Darcy Natural Convection in High Porosity Metal Foams
,”
Int. J. Heat Mass Transfer
,
45
(
18
), pp.
3781
3793
.
26.
Yang
,
J.
,
Zeng
,
M.
,
Wang
,
Q. W.
, and
Nakayama
A.
, 2010, “
Forced Convection Heat Transfer Enhancement by Porous Pin Fins in Rectangular Channels
,”
ASME J. Heat Transfer
,
132
(
5
), pp.
05172.1
05172.8
.
27.
Lienhard
,
J. H.
IV
, and
Lienhard
J. H.
V
, 2006,
A Heat Transfer Textbook
, 3rd ed.,
Phlogiston Press
,
Cambridge
.
28.
Mahjoob
,
S.
, and
Vafai
,
K.
, 2009, “
Analytical Characterization of Heat Transport Through Biological Media Incorporating Hyperthermia Treatment
,”
Int. J. Heat Mass Transfer
,
52
(
5–6
), pp.
1608
1618
.
29.
Calmidi
,
V. V.
, 1998,
Transport Phenomena in High Porosity Fibrous Metal Foams
, Ph.D. thesis, University of Colorado.
30.
Boomsma
,
K.
, and
Poulikakos
,
D.
, 2001, “
On the Effective Thermal Conductivity of a Three-Dimensionally Structured Fluid-Saturated Metal Foam
,”
Int. J. Heat Mass Transfer
,
44
(
4
), pp.
827
836
.
You do not currently have access to this content.