A confined jet impingement configuration has been investigated in which the matter of interest is the convective heat transfer from the air flow to the passage walls. The geometry is similar to gas turbine blade cooling applications. The setup is distinct from usual cooling passages by the fact that no crossflow and no bulk flow directions are present. The flow exhausts through two staggered rows of holes opposing the impingement wall. Hence, a complex 3-D vortex system arises, which entails a complex heat transfer situation. The transient thermochromic liquid crystal (TLC) method was used in previous studies to measure the heat transfer on the passage walls. Due to the nature of these experiments, the fluid as well as the wall temperature vary with location and time. As a prerequisite of the transient TLC technique, the heat transfer coefficient is assumed to be constant over the transient experiment. Therefore, it is the scope of this article to qualify this assumption and to validate the results at discrete locations. For this purpose, fast response surface thermocouples and heat flux sensors were applied, in order to gain information on the temporal evolution of the wall heat fluxes. The linear relation between heat flux and temperature difference could be verified for all measurement sites. This validates the assumption of a constant heat transfer coefficient. Nusselt number evaluations from independent techniques show a good agreement, considering the respective uncertainty ranges. For all investigated sites, the Nusselt numbers range within ±9% of the values gained from the TLC measurement.

References

1.
Hoefler
,
F.
,
Schueren
,
S.
,
von Wolfersdorf
,
J.
, and
Naik
,
S.
, 2009, “
Heat Transfer in a Confined Oblique Jet Impingement Configuration
,” ASME Paper No. GT2009–59354.
2.
Sparrow
,
E.
, and
Lovell
,
B.
, 1980, “
Heat Transfer Characteristics of an Obliquely Impinging Circular Jet
,”
ASME J. Heat Transfer
,
102
, pp.
202
209
.
3.
Donaldson
,
C. P.
, and
Snedeker
,
R. S.
, 1971, “
A Study of Free Jet Impingement. Part 1. Mean Properties of Free and Impinging Jets
,”
J. Fluid Mech.
,
45
, pp.
281
319
.
4.
Goldstein
,
R.
, and
Franchett
,
M. E.
, 1988, “
Heat Transfer From a Flat Surface to an Oblique Impinging Jet
,”
ASME J. Heat Transfer
,
110
, pp.
84
90
.
5.
Hoefler
,
F.
,
Schueren
,
S.
,
von Wolfersdorf
,
J.
, and
Naik
,
S.
, 2010, “
Heat Transfer Characteristics of an Oblique Impingement Configuration in a Passage With Ribbed Surfaces
,” ASME Paper No. GT2010–22288.
6.
Ireland
,
P. T.
, and
Jones
,
T. V.
, 2000, “
Liquid Crystal Measurements of Heat Transfer and Surface Shear Stress
,”
Meas. Sci, Technol.
,
11
, pp.
969
986
.
7.
Ekkad
,
S. V.
, and
Han
,
J.-C.
, 2000, “
A Transient Liquid Crystal Thermography Technique for Gas Turbine Heat Transfer Measurements
,”
Meas. Sci. Technol.
,
11
, pp.
957
968
.
8.
Poser
,
R.
, and
von Wolfersdorf
,
J.
, 2009, “
Liquid Crystal Thermography for Transient Heat Transfer Measurements in Complex Internal Cooling Systems
,”
Proceedings of the Int. Symposium on Heat Transfer in Gas Turbine Systems
,
Turbine–09, 34-IFHT, Antalya, Turkey
.
9.
von Wolfersdorf
,
J.
,
Hoecker
,
R.
, and
Hirsch
,
C.
, 1998, “
A Data Reduction Procedure for Transient Heat Transfer Measurements in Long Internal Cooling Channels
,”
ASME J. Heat Transfer
,
120
(
2
), pp.
314
321
.
10.
Jenkins
,
S. C.
,
Shevchuk
,
I. V.
,
von Wolfersdorf
,
J.
, and
Weigand
,
B.
, 2007, “
Transient Thermal Field Measurements in a High Aspect Ratio Channel Related to Transient Thermochromic Liquid Crystal Experiments
,” ASME Paper No. GT2007–27812.
11.
Vedula
,
R. J.
, and
Metzger
,
D. E.
, 1991, “
A Method for the Simulteanous Determination of Local Effectiveness and Heat Transfer Distributions in Three-Temperature Convection Situations
,” ASME Paper No. 91-GT–345.
12.
Talib
,
A. R. A.
,
Neely
,
A. J.
,
Ireland
,
P. T.
, and
Mullender
,
A. J.
, 2004, “
A Novel Liquid Crystal Image Processing Technique Using Multiple Gas Temperature Steps to Determine Heat Transfer Coefficient Distribution and Adiabatic Wall Temperature
,”
J. Turbomach.
,
126
(
4
), pp.
587
596
.
13.
Goldstein
,
R. J.
, and
Behbahani
,
A. I.
, 1982, “
Impingement of a Circular Jet With and Without Cross Flow
,”
Int. J. Heat Mass Transfer
,
25
, pp.
1377
1382
.
14.
Schultz
,
D. L.
, and
Jones
,
T. V.
, 1973, “
Heat Transfer Measurements in Short Duration Hypersonic Facilities
,”
NATO Advisory Group Aeronautical RD AGARDograph
,
165
.
15.
Moffat
,
R. J.
, 1988, “
Describing the Uncertainties in Experimental Results
,”
Exp. Therm. Fluid Sci.
,
1
, pp.
3
17
.
16.
Poser
,
R.
,
von Wolfersdorf
,
J.
, and
Semmler
,
K.
, 2005, “
Transient Heat Transfer Experiments in Complex Passages
,” ASME Paper No. HT2005–72260.
17.
Owen
,
J. M.
,
Newton
,
P. J.
, and
Lock
,
G. D.
, 2003, “
Transient Heat Transfer Measurements Using Thermochromic Liquid Crystal. Part 2: Experimental Uncertainties
,”
Int. J. Heat Fluid Flow
,
24
, pp.
23
28
.
18.
Cook
,
W. J.
, and
Felderman
,
E. J.
, 1966, “
Reduction of Data From Thin-Film Heat-Transfer Gages: A Concise Numerical Technique
,”
AIAA J.
,
4
, pp.
561
562
.
19.
Knauss
,
H.
,
Roediger
,
T.
,
Gaisbauer
,
U.
,
Kraemer
,
E.
,
Bountin
,
D. A.
,
Smorodsky
,
B. V.
,
Maslov
,
A. A.
,
Srulijs
,
J.
, and
Seiler
,
F.
, 2006, “
A Novel Sensor for Fast Heat Flux Measurements
,”
Proceedings of the 25th AIAA Aerodynamic Measurement Technology and Ground Testing Conference
,
San Francisco, California
.
20.
Roediger
,
T.
,
Knauss
,
H.
,
Gaisbauer
,
U.
,
Kraemer
,
E.
,
Jenkins
,
S.
, and
von Wolfersdorf
,
J.
, 2008, “
Time-Resolved Heat Transfer Measurements on the Tip Wall of a Ribbed Channel Using a Novel Heat Flux Sensor—Part I: Sensor and Benchmarks
,”
ASME J. Turbomach.
,
130
(
1
), p.
011018
.
21.
Jenkins
,
S.
,
von Wolfersdorf
,
J.
,
Weigand
,
B.
,
Roediger
,
T.
,
Knauss
,
H.
, and
Kraemer
,
E.
, 2008, “
Time-Resolved Heat Transfer Measurements on the Tip Wall of a Ribbed Channel Using a Novel Heat Flux Sensor—Part II: Heat Transfer Results
,”
ASME J. Turbomach.
,
130
(
1
), p.
011019
.
22.
Kingsley-Rowe
,
J. R.
,
Lock
,
G. D.
, and
Owen
,
J. M.
, 2005, “
Transient Heat Transfer Measurements Using Thermochromic Liquid Crystal: Lateral-Conduction Error
,”
Int. J. Heat Fluid Flow
,
26
, pp.
256
263
.
You do not currently have access to this content.