In this article, water based carbon nanotube (CNT) nanofluids have been used as quenchants to study their effects on the heat transfer rate during immersion quenching. For this purpose, water based CNT nanofluids were prepared by dispersing CNTs with and without the use of surfactant. Quench probes with a diameter of 20 mm and a length of 50 mm were prepared from 304L stainless steel. Thermocouples were fixed at the selected location inside the quench probes and the probes were quenched in distilled water and CNT nanofluids. During quenching, time-temperature data were recorded using a data acquisition system. The heat flux and temperature at the quenched surface were estimated through the inverse heat conduction method. The computation results showed that the peak heat flux was higher by 37.5% during quenching in CNT nanofluid prepared without surfactant than that in water. However, surfactant assisted CNT nanofluid promoted a prolonged vapor phase during quenching and hindered the heat transfer rates significantly. The peak heat flux was dropped by 24.9% during quenching in CNT nanofluid prepared with surfactant as compared with its base fluid of water.

1.
Babu
,
K.
, and
Prasanna Kumar
,
T. S.
, 2010, “
Mathematical Modeling of Surface Heat Flux During Quenching
,”
Metall. Mater. Trans. B
1073-5615,
41
(
1
), pp.
214
224
.
2.
Beck
,
J. V.
,
Blackwell
,
B.
, and
St. Clair
,
C. R.
, Jr.
, 1985,
Inverse Heat Conduction: Ill-Posed Problems
,
Wiley
,
New York
.
3.
Prasanna Kumar
,
T. S.
, 2004, “
A Serial Solution for the 2-D Inverse Heat Conduction Problem for Estimating Multiple Heat Flux Components
,”
Numer. Heat Transfer, Part B
1040-7790,
45
, pp.
541
563
.
4.
Prasanna Kumar
,
T. S.
, and
Kamath
,
H. C.
, 2004, “
Estimation of Multiple Heat Flux Components at the Metal/Mold Interface in Bar and Plate Aluminum Alloy Castings
,”
Metall. Mater. Trans. B
1073-5615,
35
, pp.
575
585
.
5.
Arunkumar
,
S.
,
Sreenivas Rao
,
K. V.
, and
Prasanna Kumar
,
T. S.
, 2008, “
Spatial Variation of Heat Flux at the Metal-Mold Interface Due to Mold Filling Effects in Gravity Die-Casting
,”
Int. J. Heat Mass Transfer
0017-9310,
51
, pp.
2676
2685
.
6.
Sarmiento
,
G. S.
,
Chen
,
X.
,
Vega
,
J.
,
Totten
,
G.
,
Raynoldson
,
R.
,
Huynh
,
L.
, and
Meekisho
,
L.
, 2000, “
A Comparison of Cooling Curve Analysis Using Inc-Phatran and Winprobe
,”
Proceedings of the 20th Heat Treating Conference
,
K.
Funatani
and
G. E.
Totten
, eds., St. Louis, MO, Vols. 1&2, pp.
659
665
.
7.
Aronov
,
M. A.
,
Kobasko
,
N. I.
, and
Powell
,
J. A.
, 1999, “
Practical Application of the Intensive Technology Process for Steel Parts
,”
Ind. Heat.
0019-8374, April, pp.
59
63
.
8.
Freborg
,
A. M.
,
Lynn Ferguson
,
B.
,
Aronov
,
M. A.
,
Kobasko
,
N. I.
, and
Powell
,
J. A.
, 2003, “
Intensive Quenching Theory and Application for Imparting High Residual Surface Compressive Stresses in Pressure Vessel Components
,”
ASME J. Pressure Vessel Technol.
0094-9930,
125
, pp.
188
194
.
9.
Choi
,
S. U. S.
, 2009, “
Nanofluids: From Vision to Reality Through Research
,”
ASME J. Heat Transfer
0022-1481,
131
(
3
), p.
033106
.
10.
Narayan Prabhu
,
K.
, and
Fernades
,
P.
, 2008, “
Nanoquenchants for Industrial Heat Treatment
,”
J. Mater. Eng. Perform.
1059-9495,
17
, pp.
101
103
.
11.
Kim
,
H.
,
DeWitt
,
G.
,
McKrell
,
T.
,
Buongiorno
,
J.
, and
Hu
,
L.
, 2009, “
On the Quenching of Steel and Zircaloy Spheres in Water-Based Nanofluids With Alumina, Silica and Diamond Nanoparticles
,”
Int. J. Multiphase Flow
0301-9322,
35
, pp.
427
438
.
12.
Lotfi
,
H.
, and
Shafii
,
M. B.
, 2009, “
Boiling Heat Transfer on a High Temperature Silver Sphere in Nanofluid
,”
Int. J. Therm. Sci.
1290-0729,
48
, pp.
2215
2220
.
13.
Chopkar
,
M.
,
Das
,
P. K.
, and
Manna
,
I.
, 2006, “
Synthesis and Characterization of Nanofluid for Advanced Heat Transfer Applications
,”
Scr. Mater.
1359-6462,
55
, pp.
549
552
.
14.
Chopkar
,
M.
,
Kumar
,
S.
,
Bhandari
,
D. R.
,
Das
,
P. K.
, and
Manna
,
I.
, 2007, “
Development and Characterization of Al2Cu and Ag2Al Nanoparticle Dispersed Water and Ethylene Glycol Based Nanofluid
,”
Mater. Sci. Eng., B
0921-5107,
139
, pp.
141
148
.
15.
Park
,
K.
, and
Jung
,
D.
, 2007, “
Enhancement of Nucleate Boiling Heat Transfer Using Carbon Nanotubes
,”
Int. J. Heat Mass Transfer
0017-9310,
50
, pp.
4499
4502
.
16.
Ding
,
Y.
,
Alias
,
H.
,
Wen
,
D.
, and
Williams
,
R. A.
, 2006, “
Heat Transfer of Aqueous Suspensions of Carbon Nanotubes (CNT Nanofluids)
,”
Int. J. Heat Mass Transfer
0017-9310,
49
, pp.
240
250
.
17.
Xie
,
H.
,
Lee
,
H.
,
Youn
,
W.
, and
Choi
,
M.
, 2003, “
Nanofluids Containing Multiwalled Carbon Nanotubes and Their Enhanced Thermal Conductivities
,”
J. Appl. Phys.
0021-8979,
94
, pp.
4967
4971
.
18.
Keblinski
,
P.
,
Phillpot
,
S. R.
,
Choi
,
S. U. S.
, and
Eastman
,
J. A.
, 2002, “
Mechanisms of Heat Flow in Suspensions of Nano-Sized Particles (Nanofluids)
,”
Int. J. Heat Mass Transfer
0017-9310,
45
, pp.
855
863
.
19.
Das
,
S. K.
,
Putra
,
N.
,
Thiesen
,
P.
, and
Roetzel
,
W.
, 2003, “
Temperature Dependence of Thermal Conductivity Enhancement for Nanofluids
,”
ASME J. Heat Transfer
0022-1481,
125
, pp.
567
574
.
20.
Chopkar
,
M.
,
Sudarshan
,
S.
,
Das
,
P. K.
, and
Manna
,
I.
, 2008, “
Effect of Particle Size on Thermal Conductivity of Nanofluid
,”
Metall. Mater. Trans. A
1073-5623,
39
(
7
), pp.
1535
1542
.
21.
Liu
,
M.
,
Lin
,
M.
,
Huang
,
I.
, and
Wang
,
C.
, 2005, “
Enhancement of Thermal Conductivity With Carbon Nanotube for Nanofluids
,”
Int. Commun. Heat Mass Transfer
0735-1933,
32
, pp.
1202
1210
.
22.
Amrollahi
,
A.
,
Hamidi
,
A. A.
, and
Rashidi
,
A. M.
, 2008, “
The Effects of Temperature, Volume Fraction and Vibration Time on the Thermo-Physical Properties of a Carbon Nanotube Suspension (Carbon Nanofluid)
,”
Nanotechnology
0957-4484,
19
, p.
315701
.
23.
Chen
,
L.
,
Xie
,
H.
,
Li
,
Y.
, and
Yu
,
W.
, 2008, “
Nanofluids Containing Carbon Nanotubes Treated by Mechanochemical Reaction
,”
Thermochim. Acta
0040-6031,
477
, pp.
21
24
.
24.
Joshi
,
R.
,
Engstler
,
J.
,
Nair
,
P. K.
,
Haridoss
,
P.
, and
Schneider
,
J. J.
, 2008, “
High Yield Formation of Carbon Nanotubes Using a Rotating Cathode in Open Air
,”
Diamond Relat. Mater.
0925-9635,
17
, pp.
913
919
.
25.
Babu
,
K.
, and
Prasanna Kumar
,
T. S.
, 2011, “
Effect of CNT Concentration and Agitation on Surface Heat Flux During Quenching in CNT Nanofluids
,”
Int. J. Heat Mass Transfer
0017-9310,
54
, pp.
106
117
.
26.
Lee
,
J.
,
Kim
,
M.
,
Hong
,
C. K.
, and
Shim
,
S. E.
, 2007, “
Measurement of the Dispersion Stability of Pristine and Surface-Modified Multiwalled Carbon Nanotubes in Various Nonpolar and Polar Solvents
,”
Meas. Sci. Technol.
0957-0233,
18
, pp.
3707
3712
.
27.
Rastogi
,
R.
,
Kaushal
,
R.
,
Tripathi
,
S. K.
,
Sharma
,
A. L.
,
Kaur
,
I.
, and
Bharadwaj
,
L. M.
, 2008, “
Comparative Study of Carbon Nanotube Dispersion Using Surfactants
,”
J. Colloid Interface Sci.
0021-9797,
328
, pp.
421
428
.
28.
Chen
,
X.
,
Meekisho
,
L.
, and
Totten
,
G. E.
, 1999, “
Cooling Curve Analysis Using 1×2″ Stainless Steel Probe
,”
Proceedings of the 19th Heat Treating Conference
,
S. J.
Midea
and
G. D.
Pfaffmann
, eds., Cincinnati, OH, pp.
453
460
.
29.
Buongiorno
,
J.
,
Venerus
,
D. C.
,
Prabhat
,
N.
,
McKrell
,
T.
,
Townsend
,
J.
,
Christianson
,
R.
,
Tolmachev
,
Y. V.
,
Keblinski
,
P.
,
Hu
,
L.
,
Alvarado
,
J. L.
,
Bang
,
I. C.
,
Bishnoi
,
S. W.
,
Bonetti
,
M.
,
Botz
,
F.
,
Cecere
,
A.
,
Chang
,
Y.
,
Chen
,
G.
,
Chen
,
H.
,
Chung
,
S. J.
,
Chyu
,
M. K.
,
Das
,
S. K.
,
Di Paola
,
R.
,
Ding
,
Y.
,
Dubois
,
F.
,
Dzido
,
G.
,
Eapen
,
J.
,
Escher
,
W.
,
Funfschilling
,
D.
,
Galand
,
Q.
,
Gao
,
J.
,
Gharagozloo
,
P. E.
,
Goodson
,
K. E.
,
Gutierrez
,
J. G.
,
Hong
,
H.
,
Horton
,
M.
,
Hwang
,
K. S.
,
Iorio
,
C. S.
,
Jang
,
S. P.
,
Jarzebski
,
A. B.
,
Jiang
,
Y.
,
Jin
,
L.
,
Kabelac
,
S.
,
Kamath
,
A.
,
Kedzierski
,
M. A.
,
Kieng
,
L. G.
,
Kim
,
C.
,
Kim
,
J.
,
Kim
,
S.
,
Lee
,
S. H.
,
Leong
,
K. C.
,
Manna
,
I.
,
Michel
,
B.
,
Ni
,
R.
,
Patel
,
H. E.
,
Philip
,
J.
,
Poulikakos
,
D.
,
Reynaud
,
C.
,
Savino
,
R.
,
Singh
,
P. K.
,
Song
,
P.
,
Sundararajan
,
T.
,
Timofeeva
,
E.
,
Tritcak
,
T.
,
Turanov
,
A. N.
,
Vaerenbergh
,
S. V.
,
Wen
,
D.
,
Witharana
,
S.
,
Yang
,
C.
,
Yeh
,
W. -H.
,
Zhao
,
X. -Z.
, and
Zhou
,
S. -Q.
, 2009, “
A Benchmark Study on the Thermal Conductivity of Nanofluids
,”
J. Appl. Phys.
0021-8979,
106
, p.
094312
.
You do not currently have access to this content.