Horizontal-tube falling-film heat transfer characteristics of aqueous aluminum oxide nanofluids at concentrations of 0vol%, 0.05vol%(0.20wt%), 0.5vol%(1.96wt%), 1vol%(3.86wt%) (with and without sodium dodecylbenzene sulfonate), and 2vol%(7.51wt%) are investigated and compared with predictions developed for conventional fluids. The thermophysical properties of the nanofluids, including thermal conductivity, kinematic viscosity, and surface tension, are reported, as is the mode transition behavior of the nanofluids. The experimental results for heat transfer are in good agreement with predictions for falling-film flow and no unusual Nu enhancement was observed in the present studies. Additionally, a 20% mode transitional Reynolds number increase was recorded for transitions between sheets and jets and jet-droplet mode to droplet mode. Although the findings with water-alumina nanofluids are not encouraging with respect to heat transfer, the results extend nanofluid data to a new type of flow and may help improve our understanding of nanofluid behavior. Moreover, this work provides a basis for further work on falling-film nanofluids.

1.
Conti
,
R. J.
, 1978, “
Experimental Investigation of Horizontal Tube Ammonia Film Evaporators With Small Temperature Differentials
,”
Proceedings of the 5th Ocean Thermal Energy Conversion (OTEC)
, Miami Beach, Vol.
3
, p.
VI
-161-
80
.
2.
Parken
,
W. H.
,
Fletcher
,
L. S.
,
Sernas
,
V.
, and
Han
,
J. C.
, 1990, “
Heat-Transfer Through Falling Film Evaporation and Boiling on Horizontal Tubes
,”
ASME J. Heat Transfer
0022-1481,
112
(
3
), pp.
744
750
.
3.
Hu
,
X.
, and
Jacobi
,
A. M.
, 1996, “
The Intertube Falling Film. 2. Mode Effects on Sensible Heat Transfer to a Falling Liquid Film
,”
ASME J. Heat Transfer
0022-1481,
118
(
3
), pp.
626
633
.
4.
Liu
,
P.
, 1975, “
The Evaporating Falling Film on Horizontal Tubes
,” Ph.D. thesis, University of Wisconsin-Madison.
5.
Mitrovic
,
J.
, 1986, “
Influence of Tube Spacing and Flow Rate on Heat Transfer From a Horizontal Tube to a Falling Liquid Film
,”
Proceedings of the 8th International Heat Transfer Conference
, San Francisco, Vol.
4
, pp.
1949
1956
.
6.
Putilin
,
J. V.
,
Podberezny
,
V. L.
, and
Rifert
,
V. G.
, 1996, “
Evaporation Heat Transfer in Liquid Films Flowing Down Horizontal Smooth and Longitudinally Profiled Tubes
,”
Desalination
0011-9164,
105
(
1–2
), pp.
165
170
.
7.
Parken
,
W. H.
, 1975, “
Heat Transfer to Thin Films on Horizontal Tubes
,” Ph.D. thesis, Rutgers University.
8.
Hu
,
X.
, 1995, “
The Intertube Falling-Film Modes: Transition, Hysteresis, and Effect on Heat Transfer
,” Ph.D. thesis, University of Illinois at Urbana-Champaign, Urbana, IL.
9.
Fletcher
,
L. S.
,
Sernas
,
V.
, and
Parken
,
W. H.
, 1974, “
Evaporation From Thin Water Films on Horizontal Tubes
,”
Ind. Eng. Chem. Process Des. Dev.
0196-4305,
13
, pp.
265
269
.
10.
Fujita
,
Y.
, and
Tsutsui
,
M.
, 1994, “
Experimental and Analytical Study of Evaporation Heat Transfer in Falling Films on Horizontal Tubes
,”
Proceedings of the 10th International Heat Transfer Conference
, Brighton, Vol.
6
, pp.
175
180
.
11.
Chang
,
T. B.
, 2006, “
Effects of Nozzle Configuration on a Shell-and-Tube Spray Evaporator With Liquid Catcher
,”
Appl. Therm. Eng.
1359-4311,
26
(
8–9
), pp.
814
823
.
12.
Chyu
,
M. -C.
, 1984, “
Falling Film Evaporation on Horizontal Tubes With Smooth and Structured Surfaces
,” Ph.D. thesis, Iowa State University.
13.
Liu
,
Z. H.
, and
Yi
,
H.
, 2001, “
Enhanced Evaporation Heat Transfer of Water and R-11 Falling Film With the Roll-Worked Enhanced Tube Bundle
,”
Exp. Therm. Fluid Sci.
0894-1777,
25
(
6
), pp.
447
455
.
14.
Gstoehl
,
D.
, 2004, “
Heat Transfer and Flow Visualization of Falling Film Condensation on Tube Arrays With Plain and Enhanced Surfaces
,” Ph.D. thesis, Swiss Federal Institute of Technology, Lausanne, Switzerland.
15.
Armbruster
,
R.
, and
Mitrovic
,
J.
, 1998, “
Evaporative Cooling of a Falling Water Film on Horizontal Tubes
,”
Exp. Therm. Fluid Sci.
0894-1777,
18
(
3
), pp.
183
194
.
16.
Kim
,
B.
, and
Lee
,
C.
, 2003, “
Non-Absorbable Gas Effects on Heat and Mass Transfer in Falling Film Absorption
,”
KSME Int. J.
1226-4865,
17
(
4
), pp.
581
589
.
17.
Briggs
,
A.
, and
Sabaratnam
,
S.
, 2005, “
Condensation From Pure Steam and Steam-Air Mixtures on Integral-Fin Tubes in a Bank
,”
ASME J. Heat Transfer
0022-1481,
127
(
6
), pp.
571
580
.
18.
Ganic
,
E. N.
, and
Roppo
,
M. N.
, 1980, “
An Experimental Study of Falling Liquid Film Breakdown on a Horizontal Cylinder During Heat Transfer
,”
ASME J. Heat Transfer
0022-1481,
102
, pp.
342
346
.
19.
Armbruster
,
R.
, and
Mitrovic
,
J.
, 1994, “
Patterns of Falling Film Flow Over Horizontal Smooth Tubes
,”
Proceedings of the 10th International Heat Transfer Conference
, Brighton, Vol.
3
, pp.
275
280
.
20.
Hu
,
X.
, and
Jacobi
,
A. M.
, 1996, “
The Intertube Falling Film. 1. Flow Characteristics, Mode Transitions, and Hysteresis
,”
ASME J. Heat Transfer
0022-1481,
118
(
3
), pp.
616
625
.
21.
Roques
,
J. F.
,
Dupont
,
V.
, and
Thome
,
J. R.
, 2002, “
Falling Film Transitions on Plain and Enhanced Tubes
,”
ASME J. Heat Transfer
0022-1481,
124
(
3
), pp.
491
499
.
22.
Roques
,
J. F.
, and
Thome
,
J. R.
, 2003, “
Falling Film Transitions Between Droplet, Column, and Sheet Flow Modes on a Vertical Array of Horizontal 19 FPI and 40 FPI Low-Finned Tubes
,”
Heat Transfer Eng.
0145-7632,
24
(
6
), pp.
40
45
.
23.
Mitrovic
,
J.
, 2005, “
Flow Structures of a Liquid Film Falling on Horizontal Tubes
,”
Chem. Eng. Technol.
0930-7516,
28
(
6
), pp.
684
694
.
24.
Thome
,
J. R.
, 1999, “
Falling Film Evaporation: State-of-the-Art Review of Recent Work
,”
J. Enhanced Heat Transfer
1065-5131,
6
(
2–4
), pp.
263
277
.
25.
Ribatski
,
G.
, and
Jacobi
,
A. M.
, 2005, “
Falling-Film Evaporation on Horizontal Tubes—A Critical Review
,”
Int. J. Refrig.
0140-7007,
28
(
5
), pp.
635
653
.
26.
Choi
,
S. U. S.
, 1995,
Enhancing Thermal Conductivity of Fluids With Nanoparticles, Developments and Applications of Non-Newtonian Flows
,
ASME
,
New York
.
27.
Masuda
,
H.
,
Ebata
,
A.
,
Teramae
,
K.
, and
Hishinuma
,
N.
, 1993, “
Alteration of Thermal Conductivity and Viscosity of Liquid by Dispersing Ultra-Fine Particles (Dispersion of Al2O3, SiO2, and TiO2 Ultra-Fine Particles)
,”
Jpn. J. Thermophys. Prop.
,
7
(
4
), pp.
227
233
.
28.
Xuan
,
Y.
, and
Li
,
Q.
, 2000, “
Heat Transfer Enhancement of Nanofluids
,”
Int. J. Heat Fluid Flow
0142-727X,
21
(
1
), pp.
58
64
.
29.
Choi
,
S. U. S.
,
Zhang
,
Z. G.
,
Yu
,
W.
,
Lockwood
,
F. E.
, and
Grulke
,
E. A.
, 2001, “
Anomalous Thermal Conductivity Enhancement in Nanotube Suspensions
,”
Appl. Phys. Lett.
0003-6951,
79
(
14
), pp.
2252
2254
.
30.
Eastman
,
J. A.
,
Choi
,
S. U. S.
,
Li
,
S.
,
Yu
,
W.
, and
Thompson
,
L. J.
, 2001, “
Anomalously Increased Effective Thermal Conductivities of Ethylene Glycol-Based Nanofluids Containing Copper Nanoparticles
,”
Appl. Phys. Lett.
0003-6951,
78
(
6
), pp.
718
720
.
31.
Liu
,
M. S.
,
Lin
,
M. C. C.
,
Tsai
,
C. Y.
, and
Wang
,
C. C.
, 2006, “
Enhancement of Thermal Conductivity With Cu for Nanofluids Using Chemical Reduction Method
,”
Int. J. Heat Mass Transfer
0017-9310,
49
(
17–18
), pp.
3028
3033
.
32.
Maxwell
,
J. C.
, 1873,
Treatise on Electricity and Magnetism
,
Clarendon
,
Oxford
.
33.
Hamilton
,
R. L.
, and
Crosser
,
O. K.
, 1962, “
Thermal Conductivity of Heterogeneous Two-Component Systems
,”
Ind. Eng. Chem. Fundam.
0196-4313,
1
, pp.
187
191
.
34.
Wen
,
D. S.
, and
Ding
,
Y. L.
, 2004, “
Experimental Investigation Into Convective Heat Transfer of Nanofluids at the Entrance Region Under Laminar Flow Conditions
,”
Int. J. Heat Mass Transfer
0017-9310,
47
(
24
), pp.
5181
5188
.
35.
Yang
,
Y.
,
Zhang
,
Z. G.
,
Grulke
,
E. A.
,
Anderson
,
W. B.
, and
Wu
,
G.
, 2005, “
Heat Transfer Properties of Nanoparticle-in-Fluid Dispersions (Nanofluids) in Laminar Flow
,”
Int. J. Heat Mass Transfer
0017-9310,
48
(
6
), pp.
1107
1116
.
36.
Ding
,
Y. L.
,
Alias
,
H.
,
Wen
,
D. S.
, and
Williams
,
R. A.
, 2006, “
Heat Transfer of Aqueous Suspensions of Carbon Nanotubes (CNT Nanofluids)
,”
Int. J. Heat Mass Transfer
0017-9310,
49
(
1–2
), pp.
240
250
.
37.
Heris
,
S. Z.
,
Etemad
,
S. G.
, and
Esfahany
,
M. N.
, 2006, “
Experimental Investigation of Oxide Nanofluids Laminar Flow Convective Heat Transfer
,”
Int. Commun. Heat Mass Transfer
0735-1933,
33
(
4
), pp.
529
535
.
38.
Xuan
,
Y. M.
, and
Li
,
Q.
, 2003, “
Investigation on Convective Heat Transfer and Flow Features of Nanofluids
,”
ASME J. Heat Transfer
0022-1481,
125
(
1
), pp.
151
155
.
39.
Putra
,
N.
,
Roetzel
,
W.
, and
Das
,
S. K.
, 2003, “
Natural Convection of Nano-Fluids
,”
Heat and Mass Transfer
,
39
(
8–9
), pp.
775
784
.
40.
Wen
,
D.
, and
Ding
,
Y.
, 2006, “
Natural Convective Heat Transfer of Suspensions of Titanium Dioxide Nanoparticles (Nanofluids)
,”
IEEE Trans. Nanotechnol.
1536-125X,
5
(
3
), pp.
220
227
.
41.
Rea
,
U.
,
Mckrell
,
T.
,
Hu
,
L. W.
, and
Buongiorno
,
J.
, 2009, “
Laminar Convective Heat Transfer and Viscous Pressure Loss of Alumina-Water and Zirconia-Water Nanofluids
,”
Int. J. Heat Mass Transfer
0017-9310,
52
(
7–8
), pp.
2042
2048
.
42.
Kang
,
Y. T.
,
Kim
,
H. J.
, and
Lee
,
K. I.
, 2008, “
Heat and Mass Transfer Enhancement of Binary Nanofluids for H2O/LiBr Falling Film Absorption Process
,”
Int. J. Refrig.
0140-7007,
31
(
5
), pp.
850
856
.
43.
Chon
,
C. H.
,
Kihm
,
K. D.
,
Lee
,
S. P.
, and
Choi
,
S. U. S.
, 2005, “
Empirical Correlation Finding the Role of Temperature and Particle Size for Nanofluid (Al2o3) Thermal Conductivity Enhancement
,”
Appl. Phys. Lett.
0003-6951,
87
(
15
), p.
153107
.
44.
Namburu
,
P. K.
,
Kulkarni
,
D. P.
,
Dandekar
,
A.
, and
Das
,
D. K.
, 2007, “
Experimental Investigation of Viscosity and Specific Heat of Silicon Dioxide Nanofluids
,”
Micro & Nano Letters
,
2
(
3
), pp.
67
71
.
45.
Ruan
,
B.
,
Jacobi
,
A. M.
, and
Li
,
L.
, 2009, “
Effects of a Countercurrent Gas Flow on Falling-Film Mode Transitions Between Horizontal Tubes
,”
Exp. Therm. Fluid Sci.
0894-1777,
33
, pp.
1216
1225
.
46.
Kays
,
W. M.
, and
Crawford
,
M. E.
, 1980,
Convective Heat and Mass Transfer
,
McGraw-Hill
,
New York
.
47.
Lee
,
S.
,
Choi
,
S. U. S.
,
Li
,
S.
, and
Eastman
,
J. A.
, 1999, “
Measuring Thermal Conductivity of Fluids Containing Oxide Nanoparticles
,”
ASME J. Heat Transfer
0022-1481,
121
(
2
), pp.
280
289
.
48.
Das
,
S. K.
,
Putra
,
N.
,
Thiesen
,
P.
, and
Roetzel
,
W.
, 2003, “
Temperature Dependence of Thermal Conductivity Enhancement for Nanofluids
,”
ASME J. Heat Transfer
0022-1481,
125
(
4
), pp.
567
574
.
49.
Xuan
,
Y.
, and
Roetzel
,
W.
, 2000, “
Conceptions for Heat Transfer Correlation of Nanofluids
,”
Int. J. Heat Mass Transfer
0017-9310,
43
(
19
), pp.
3701
3707
.
50.
Nguyen
,
C. T.
,
Desgranges
,
F.
,
Roy
,
G.
,
Galanis
,
N.
,
Mare
,
T.
,
Boucher
,
S.
, and
Mintsa
,
H. A.
, 2007, “
Temperature and Particle-Size Dependent Viscosity Data for Water-Based Nanofluids-Hysteresis Phenomenon
,”
Int. J. Heat Fluid Flow
0142-727X,
28
(
6
), pp.
1492
1506
.
51.
Das
,
S. K.
,
Putra
,
N.
, and
Roetzel
,
W.
, 2003, “
Pool Boiling of Nano-Fluids on Horizontal Narrow Tubes
,”
Int. J. Multiphase Flow
0301-9322,
29
(
8
), pp.
1237
1247
.
52.
Das
,
S. K.
,
Putra
,
N.
, and
Roetzel
,
W.
, 2003, “
Pool Boiling Characteristics of Nano-Fluids
,”
Int. J. Heat Mass Transfer
0017-9310,
46
(
5
), pp.
851
862
.
53.
Bang
,
I. C.
, and
Chang
,
S. H.
, 2005, “
Boiling Heat Transfer Performance and Phenomena of Al2O3–Water Nano-Fluids From a Plain Surface in a Pool
,”
Int. J. Heat Mass Transfer
0017-9310,
48
(
12
), pp.
2407
2419
.
54.
Wen
,
D. S.
, and
Ding
,
Y. L.
, 2005, “
Experimental Investigation Into the Pool Boiling Heat Transfer of Aqueous Based Gamma-Alumina Nanofluids
,”
J. Nanopart. Res.
1388-0764,
7
(
2–3
), pp.
265
274
.
55.
Kim
,
S. J.
,
Bang
,
I. C.
,
Buongiorno
,
J.
, and
Hu
,
L. W.
, 2006, “
Effects of Nanoparticle Deposition on Surface Wettability Influencing Boiling Heat Transfer in Nanofluids
,”
Appl. Phys. Lett.
0003-6951,
89
(
15
), p.
153107
.
56.
Das
,
S. K.
,
Narayan
,
G. P.
, and
Baby
,
A. K.
, 2008, “
Survey on Nucleate Pool Boiling of Nanofluids: The Effect of Particle Size Relative to Roughness
,”
J. Nanopart. Res.
1388-0764,
10
(
7
), pp.
1099
1108
.
57.
Lv
,
L. C.
, and
Liu
,
Z. H.
, 2008, “
Boiling Characteristics in Small Vertical Tubes With Closed Bottom for Nanofluids and Nanoparticle-Suspensions
,”
Heat and Mass Transfer
,
45
(
1
), pp.
1
9
.
You do not currently have access to this content.