Adsorption heat pumps and chillers (ADHPCs) can utilize solar or waste heat to provide space conditioning, process heating or cooling, or energy storage. In these devices, intraparticle diffusion is shown to present a significant mass transfer resistance compared with interparticle permeation. Therefore, accurate modeling of intraparticle adsorbate mass transfer is essential for the accurate prediction of overall ADHPC performance. The linear driving force (LDF) approximation is often used to model intraparticle mass transfer in place of more detailed equations because of its computational simplicity. This paper directly compares the adsorbate contents predicted using the LDF and Fickian diffusion (FD) equations for cylindrical and spherical geometries. These geometries are typical of adsorbents commonly used in adsorption refrigeration such as cylindrical activated carbon fibers (ACFs) and spherical silica gel particles. In addition to the conventional LDF approximation, an empirical LDF approximation proposed by El-Sharkawy et al. (2006, “A Study on the Kinetics of Ethanol-Activated Carbon Fiber: Theory and Experiments,” Int. J. Heat Mass Transfer, 49(17–18), pp. 3104–3110) for ACF-ethanol (cylindrical geometry) is compared with the FD solution. By analyzing the relative error of the LDF approximation compared with the FD solution for an isothermal step-change boundary condition, the conditions under which the LDF approximation agrees with the FD equation are evaluated. It is shown that for a given working pair, agreement between the LDF and FD equations is affected by diffusivity, particle radius, half-cycle time, initial adsorbate content, and equilibrium adsorbate content. A step change in surface adsorbate content for an isothermal particle is shown to be the boundary condition that yields the maximum LDF error, and therefore provides a conservative bound for the LDF error under nonisothermal conditions. The trends exhibited by the ACF-ethanol and silica gel-water working pairs are generalized through dimensionless time and dimensionless driving adsorbate content, and LDF error is mapped using these two variables. This map may be used to determine ranges of applicability of the LDF approximation in an ADHPC model.

1.
Scott
,
D. M.
, 1994, “
Linear Driving Force Model for Cyclic Adsorption: The Effect of Shape
,”
Chem. Eng. Sci.
0009-2509,
49
(
6
), pp.
914
916
.
2.
Ruthven
,
D. M.
, 1984,
Principles of Adsorption and Adsorption Processes
,
Wiley
,
New York
.
3.
Chahbani
,
M. H.
, and
Tondeur
,
D.
, 2000, “
Mass Transfer Kinetics in Pressure Swing Adsorption
,”
Sep. Purif. Technol.
1383-5866,
20
(
2–3
), pp.
185
196
.
4.
Pesaran
,
A. A.
, and
Mills
,
A. F.
, 1987, “
Moisture Transport in Silica Gel Packed Beds—I. Theoretical Study
,”
Int. J. Heat Mass Transfer
0017-9310,
30
(
6
), pp.
1037
1049
.
5.
Álvarez-Ramirez
,
J.
,
Fernandez-Anaya
,
G.
,
Valdes-Parada
,
F. J.
, and
Ochoa-Tapia
,
J. A.
, 2005, “
Physical Consistency of Generalized Linear Driving Force Models for Adsorption in a Particle
,”
Ind. Eng. Chem. Res.
0888-5885,
44
(
17
), pp.
6776
6783
.
6.
Do
,
D. D.
, 1998,
Adsorption Analysis: Equilibria and Kinetics
,
Imperial College Press
,
London
.
7.
Sircar
,
S.
, and
Hufton
,
J. R.
, 2000, “
Why Does the Linear Driving Force Model for Adsorption Kinetics Work?
,”
Adsorption
0929-5607,
6
(
2
), pp.
137
147
.
8.
Yao
,
C.
, and
Tien
,
C.
, 1998, “
Application of New Rate Models to Cyclic Adsorption in Adsorbents
,”
Chem. Eng. Sci.
0009-2509,
53
(
21
), pp.
3763
3766
.
9.
Glueckauf
,
E.
, 1955, “
Theory of Chromatography. Part 10.—Formulae for Diffusion into Spheres and Their Application to Chromatography
,”
Trans. Faraday Soc.
0014-7672 ,
51
, pp.
1540
1551
.
10.
Chua
,
H. T.
,
Ng
,
K. C.
,
Wang
,
W.
,
Yap
,
C.
, and
Wang
,
X. L.
, 2004, “
Transient Modeling of a Two-Bed Silica Gel-Water Adsorption Chiller
,”
Int. J. Heat Mass Transfer
0017-9310,
47
(
4
), pp.
659
669
.
11.
Saha
,
B. B.
,
El-Sharkawy
,
I. I.
,
Chakraborty
,
A.
, and
Koyama
,
S.
, 2007, “
Study on an Activated Carbon Fiber-Ethanol Adsorption Chiller: Part I—System Description and Modeling
,”
Int. J. Refrig.
0140-7007,
30
(
1
), pp.
86
95
.
12.
Zhang
,
L. Z.
, and
Wang
,
L.
, 1999, “
Momentum and Heat Transfer in the Adsorbent of a Waste-Heat Adsorption Cooling System
,”
Energy
0360-5442,
24
(
7
), pp.
605
624
.
13.
Hamamoto
,
Y.
,
Alam
,
K. C. A.
,
Akisawa
,
A.
, and
Kashiwagi
,
T.
, 2005, “
Performance Evaluation of a Two-Stage Adsorption Refrigeration Cycle With Different Mass Ratio
,”
Int. J. Refrig.
0140-7007,
28
(
3
), pp.
344
52
.
14.
Di
,
J.
,
Wu
,
J. Y.
,
Xia
,
Z. Z.
, and
Wang
,
R. Z.
, 2007, “
Theoretical and Experimental Study on Characteristics of a Novel Silica Gel-Water Chiller Under the Conditions of Variable Heat Source Temperature
,”
Int. J. Refrig.
0140-7007,
30
(
3
), pp.
515
526
.
15.
Liu
,
Y.
, and
Leong
,
K. C.
, 2008, “
Numerical Modeling of a Zeolite/Water Adsorption Cooling System With Non-Constant Condensing Pressure
,”
Int. Commun. Heat Mass Transfer
0735-1933,
35
(
5
), pp.
618
22
.
16.
Alpay
,
E.
, and
Scott
,
D. M.
, 1992, “
The Linear Driving Force Model for Fast-Cycle Adsorption and Desorption in a Spherical Particle
,”
Chem. Eng. Sci.
0009-2509,
47
(
2
), pp.
499
502
.
17.
Carta
,
G.
, 1993, “
The Linear Driving Force Approximation for Cyclic Mass Transfer in Spherical Particles
,”
Chem. Eng. Sci.
0009-2509,
48
(
3
), pp.
622
625
.
18.
Tien
,
C.
, 1994,
Adsorption Calculations and Modeling
,
Butterworth
,
Boston
.
19.
Schneider
,
P.
, and
Smith
,
J. M.
, 1968, “
Adsorption Rate Constants From Chromatography
,”
AIChE J.
0001-1541,
14
(
5
), pp.
762
771
.
20.
Schneider
,
P.
, and
Smith
,
J. M.
, 1968, “
Chromatographic Study of Surface Diffusion
,”
AIChE J.
0001-1541,
14
(
6
), pp.
886
895
.
21.
Peel
,
R. G.
,
Benedek
,
A.
, and
Crowe
,
C. M.
, 1981, “
A Branched Pore Kinetic Model for Activated Carbon Adsorption
,”
AIChE J.
0001-1541,
27
(
1
), pp.
26
32
.
22.
Taqvi
,
S. M.
,
Vishnoi
,
A.
, and
Levan
,
M. D.
, 1996, “
Effect of Macropore Convection on Mass Transfer in a Bidisperse Adsorbent Particle
,”
Adsorption
0929-5607,
3
(
2
), pp.
127
136
.
23.
Aristov
,
Y. I.
,
Glaznev
,
I. S.
,
Freni
,
A.
, and
Restuccia
,
G.
, 2006, “
Kinetics of Water Sorption on SWS-1L (Calcium Chloride Confined to Mesoporous Silica Gel): Influence of Grain Size and Temperature
,”
Chem. Eng. Sci.
0009-2509,
61
(
5
), pp.
1453
1458
.
24.
El-Sharkawy
,
I. I.
,
Saha
,
B. B.
,
Koyama
,
S.
, and
Ng
,
K. C.
, 2006, “
A Study on the Kinetics of Ethanol-Activated Carbon Fiber: Theory and Experiments
,”
Int. J. Heat Mass Transfer
0017-9310,
49
(
17–18
), pp.
3104
3110
.
25.
Saha
,
B. B.
,
El-Sharkawy
,
I. I.
,
Chakraborty
,
A.
,
Koyama
,
S.
,
Yoon
,
S. -H.
, and
Ng
,
K. C.
, 2006, “
Adsorption Rate of Ethanol on Activated Carbon Fiber
,”
J. Chem. Eng. Data
0021-9568,
51
(
5
), pp.
1587
1592
.
26.
Dawoud
,
B.
,
Vedder
,
U.
,
Am
,
E. -H.
, and
Dunne
,
S.
, 2007, “
Non-Isothermal Adsorption Kinetics of Water Vapour Into a Consolidated Zeolite Layer
,”
Int. J. Heat Mass Transfer
0017-9310,
50
(
11–12
), pp.
2190
2199
.
27.
Guo
,
J.
,
Shah
,
D. B.
, and
Talu
,
O.
, 2007, “
Determination of Effective Diffusivities in Commercial Single Pellets: Effect of Water Loading
,”
Ind. Eng. Chem. Res.
0888-5885,
46
(
2
), pp.
600
607
.
28.
Chahbani
,
M. H.
,
Labidi
,
J.
, and
Paris
,
J.
, 2002, “
Effect of Mass Transfer Kinetics on the Performance of Adsorptive Heat Pump Systems
,”
Appl. Therm. Eng.
1359-4311,
22
(
1
), pp.
23
40
.
29.
Chua
,
H. T.
,
Ng
,
K. C.
,
Malek
,
A.
,
Kashiwagi
,
T.
,
Akisawa
,
A.
, and
Saha
,
B. B.
, 1999, “
Modeling the Performance of Two-Bed, Silica Gel-Water Adsorption Chillers
,”
Int. J. Refrig.
0140-7007,
22
(
3
), pp.
194
204
.
30.
Ben Amar
,
N.
,
Sun
,
L. M.
, and
Meunier
,
F.
, 1996, “
Numerical Analysis of Adsorptive Temperature Wave Regenerative Heat Pump
,”
Appl. Therm. Eng.
1359-4311,
16
(
5
), pp.
405
18
.
31.
de Nevers
,
N.
, 2005,
Fluid Mechanics for Chemical Engineers
,
McGraw-Hill
,
New York
.
32.
Saha
,
B. B.
,
Koyama
,
S.
,
El-Sharkawy
,
I. I.
,
Kuwahara
,
K.
,
Kariya
,
K.
, and
Ng
,
K. C.
, 2006, “
Experiments for Measuring Adsorption Characteristics of an Activated Carbon Fiber/Ethanol Pair Using a Plate-Fin Heat Exchanger
,”
HVAC&R Res.
1078-9669,
12
(
3B
), pp.
767
782
.
33.
Saha
,
B. B.
,
El-Sharkawy
,
I. I.
,
Chakraborty
,
A.
, and
Koyama
,
S.
, 2007, “
Study on an Activated Carbon Fiber-Ethanol Adsorption Chiller: Part II—Performance Evaluation
,”
Int. J. Refrig.
0140-7007,
30
(
1
), pp.
96
102
.
34.
El-Sharkawy
,
I. I.
,
Kuwahara
,
K.
,
Saha
,
B. B.
,
Koyama
,
S.
, and
Ng
,
K. C.
, 2006, “
Experimental Investigation of Activated Carbon Fibers/Ethanol Pairs for Adsorption Cooling System Application
,”
Appl. Therm. Eng.
1359-4311,
26
(
8–9
), pp.
859
865
.
35.
Hamamoto
,
Y.
,
Alam
,
K. C. A.
,
Saha
,
B. B.
,
Koyama
,
S.
,
Akisawa
,
A.
, and
Kashiwagi
,
T.
, 2006, “
Study on Adsorption Refrigeration Cycle Utilizing Activated Carbon Fibers. Part 1. Adsorption Characteristics
,”
Int. J. Refrig.
0140-7007,
29
(
2
), pp.
305
314
.
36.
Hamamoto
,
Y.
,
Alam
,
K. C. A.
,
Saha
,
B. B.
,
Koyama
,
S.
,
Akisawa
,
A.
, and
Kashiwagi
,
T.
, 2006, “
Study on Adsorption Refrigeration Cycle Utilizing Activated Carbon Fibers. Part 2. Cycle Performance Evaluation
,”
Int. J. Refrig.
0140-7007,
29
(
2
), pp.
315
327
.
37.
Saha
,
B. B.
,
Koyama
,
S.
,
Alam
,
K. C. A.
,
Hamamoto
,
Y.
,
Akisawa
,
A.
,
Kashiwagi
,
T.
,
Ng
,
K. C.
, and
Chua
,
H. T.
, 2002, “
Isothermal Adsorption Measurement for the Development of High Performance Adsorption Cooling System
,”
Proceedings of the Asian Conference on Refrigeration and Air Conditioning
, Kobe, Japan.
38.
Lordgooei
,
M.
,
Rood
,
M. J.
, and
Rostam-Abadi
,
M.
, 2001, “
Modeling Effective Diffusivity of Volatile Organic Compounds in Activated Carbon Fiber
,”
Environ. Sci. Technol.
0013-936X,
35
(
3
), pp.
613
619
.
39.
Sakoda
,
A.
, and
Suzuki
,
M.
, 1984, “
Fundamental Study on Solar Powered Adsorption Cooling System
,”
J. Chem. Eng. Jpn
,
17
(
1
), pp.
52
57
.
40.
Myers
,
G. E.
, 1998,
Analytical Methods in Conduction Heat Transfer
, 2nd ed.,
AMCHT Publications
,
Madison, WI
.
41.
Lysenko
,
A.
, 2007, “
Prospects for Development of Research and Production of Carbon Fibre Sorbents
,”
Fibre Chemistry
,
39
(
2
), pp.
93
102
.
42.
Clausse
,
M.
,
Meunier
,
F.
,
Coulie
,
J.
, and
Herail
,
E.
, 2008, “
Comparison of Adsorption Systems for Polygeneration Systems Based on Fuel Cells
,”
Proceedings of the International Sorption Heat Pump Conference 2008
.
You do not currently have access to this content.