This paper deals with the natural convective circulation thermosyphon with supercritical CO2 flow. New heat transport model aiming at supercritical thermosyphon heat transfer and stability is proposed and numerically studied. Two-dimensional rectangular natural circulation loop model is set up and the effect of pipe diameter is systematically analyzed. Finite volume method is used to solve the conservative equations with supercritical turbulence model incorporated. It is found that supercritical CO2 thermosyphon can achieve high Reynolds flow as 104–105 even temperature differences between source and sink is small. Stabilized flow is found for larger pipe diameter group due to the developed flow field and enhanced heat transfer. Heat transport at cooler side can be enhanced at higher operating temperature and be critical for the stabilization of the supercritical thermosyphon. Correlations of flow and heat transfer are reexamined and good agreements with classical reports are also obtained in the present study.

References

1.
Welander
,
P.
, 1967, “
On the Oscillatory Instability of a Differentially Heated Fluid Loop
,”
J. Fluid Mech.
,
29
, pp.
17
30
.
2.
Vrjayan
,
P. K.
,
Austregesilo
,
H.
, and
Teschendorff
,
V
, 1995, “
Simulation of the Unstable Oscillatory Behavior of Single-Phase Natural Circulation With Repetitive Flow Reversals in a Rectangular Loop Using the Computer Code ATHLET
,”
Nucl. Eng. Des.
,
155
, pp.
623
641
.
3.
Misale
,
M.
,
Frogheri
,
M.
,
D’Auria
,
K.
,
Fontani
,
E.
, and
Garcia
,
A.
, 1999, “
Analysis of Single-Phase Natural Circulation Experiments by System Codes
,”
Int. J. Therm. Sci.
,
38
, pp.
977
983
.
4.
Cammarata
,
L.
,
Fichera
,
A.
,
Guglielmino
,
I. D.
, and
Pagano
,
A.
, 2004, “
On the Effect of Gravity on the Bifurcation of Rectangular Closed-Loop Thermosyphon
,”
Heat Mass Transfer
,
40
, pp.
801
808
.
5.
Mousavian
,
S. K.
,
Misale
,
M.
,
D’Aural
,
K
, and
Salehi
,
M.
, 2004, “
Transient and Stability in Single-Phase Natural Circulation
,”
Ann. Nucl. Energy
,
31
, pp.
1177
1198
.
6.
Basu
,
D. N.
,
Bhattacharyys
,
S.
, and
Das
,
P. K.
, 2008, “
Effect of Geometric Parameters on Steady-State Performance of Single-Phase NCL With Heat Loss to Ambient
,”
Int. J. Therm. Sci.
,
47
, pp.
1359
1373
.
7.
Neksa
,
P.
,
Rekstad
,
H.
,
Zakeri
,
G. R.
, and
Schiefloe
,
A.
, 1998, “
CO2-Heat Pump Water Heater: Characteristics, System Design and Experimental Results
,”
Int. J. Refrig.
,
21
, pp.
172
179
.
8.
Neksa
,
P.
, 2002, “
CO2 Heat Pump Systems
,”
Int. J. Refrig.
,
25
, pp.
421
427
.
9.
Zhang
,
X. R.
,
Yamaguchi
,
H.
,
Fujima
,
K.
,
Enomoto
,
M.
, and
Sawada
,
N.
, 2006, “
Experimental Performance Analysis of Supercritical CO2 Thermodynamic Cycle Powered by Solar Energy
,”
American Institute of Physics Conference Proceedings
, Vol.
832
, pp.
419
424
.
10.
Zhang
,
X. R.
,
Yamaguchi
,
H.
,
Fujima
,
K.
,
Enomoto
,
M.
, and
Sawada
N.
, 2007, “
Theoretical Analysis of a Thermodynamic Cycle for Power Production Using Supercritical Carbon Dioxide
,”
Energy
,
32
, pp.
591
599
.
11.
Atrens
,
A. D.
,
Gurgenci
,
H.
, and
Rudolph
,
H. V.
, 2009, “
CO2 Thermosiphon for Competitive Geothermal Power Generation
,”
Energy Fuels
,
23
, pp.
553
557
.
12.
Cheng
,
L.
, and
Thome
,
J. R.
, 2009, “
Cooling of Microprocessors Using Flow Boiling CO2 in a Micro-Evaporator: Preliminary Analysis and Performance Comparison
,”
Appl. Therm. Eng.
,
29
, pp.
2426
2432
.
13.
Syouichirou
,
Y.
,
Smith
,
R. L.
,
Inomata
,
H.
,
Yukihiko
,
M.
, and
Kunio
,
A.
, 2005, “
Performance of a Natural Convection Circulation System for Supercritical Fluids
,”
J. Supercrit. Fluids
,
36
, pp.
70
80
.
14.
Chatoorgoon
,
V.
,
Voodi
,
A.
, and
Upadhye
,
P.
, 2005, “
The Stability Boundary for Supercritical Flow in Natural-Convection Loops Part II: CO2 and H2,
Nucl. Eng. Des.
,
235
, pp.
2581
2593
.
15.
Chatoorgoon
,
V
,
Voodi
,
A.
, and
Fraser
,
D.
, 2005, “
The Stability Boundary for Supercritical Flow in Natural Convection Loops Part I: H2O Studies
,”
Nucl. Eng. Des.
,
235
, pp.
2570
2580
.
16.
Prashant
,
K. J.
, and
Rizwan-uddin
, 2008, “
Numerical Analysis of Supercritical Flow Instabilities in a Natural Circulation Loop
,”
Nucl. Eng. Des.
,
238
, pp.
1947
1957
.
17.
Winkler
,
H.
,
Theobald
,
B.
, and
Quack
,
H.
, 2007, “
The Extraordinary Properties of Carbon Dioxide as Secondary Refrigerant
,” 22nd International Congress of Refrigeration, IIF/HR, Aug. 21–26, Beijing, Paper No. ICR07-B1-733.
18.
Kiran Kumar
,
K.
, and
Ram Gopal
,
M.
, 2009, “
Steady-State Analysis of CO2 Based Natural Circulation Loops With End Heat Exchangers
,”
Appl. Therm. Eng.
,
29
, pp.
1893
1903
.
19.
Chen
,
L.
,
Zhang
,
X.-R.
,
Yamaguchi
,
H.
, and
Liu
,
Z.-S.
(Simon), 2010, “
Effect of Heat Transfer on the Instabilities and Transitions of Supercritical CO2 Flow in a Natural Circulation Loop
,”
Int. J. Heat Mass Transfer
,
53
, pp.
4101
4111
.
20.
Xinrong
,
Z.
,
Lin.
,
C.
, and
Hiroshi
,
Y.
, 2010, “
Natural Convective Flow and Heat Transfer of Supercritical CO2 in a Rectangular Circulation loop
,”
Int. J. Heat Mass Transfer
,
53
, pp.
4112
4122
.
21.
Xinrong.
,
Z.
, and
Yamaguchi
,
H.
, 2008, “
An Experimental Study on Evacuated Tube Solar Collector Using Supercritical CO2
,”
Appl. Therm. Eng.
,
28
, pp.
1225
1233
.
22.
Jue
,
Y.
,
Yoshiaki
,
O.
,
Yuiki
,
I.
,
Jie
,
L.
, and
Jaewoon
,
Y.
, 2007, “
Numerical Investigation of Heat Transfer in Upward Flow of Supercritical Water in Circular Tubes and Tight Fuel Rod Bundles
,”
Nucl. Eng. Des.
,
237
, pp.
420
430
.
23.
Lisboa
,
P. F.
,
Fernandes
,
J.
,
Simoes
,
P. C.
,
Mota Joser
,
P. B.
, and
Esteban
,
S.
, 2010, “
Computational-Fluid-Dynamics Study of a Kenics Static Mixer as a Heat Exchanger for Supercritical Carbon Dioxide
,”
J. Supercrit. Fluids
,
55
, pp.
107
115
.
24.
NIST Standard Reference Database-REFPROP, Version 8.0, 2006.
25.
Xiaoying
,
S.
,
Schmidt
,
D. P.
, and
Watkins
,
J. J.
, 2007, “
Study of Natural Convection in Supercritical CO2 Cold Wall Reactors: Simulations and Experiments
”,
J. Supercrit. Fluids
,
40
, pp.
84
92
.
26.
Issa
,
R. I.
, 1986, “
Solution of the Implicit Discretized Fluid Flow Equations by Operator Splitting
,”
J. Comput. Phys.
,
62
, pp.
40
65
.
27.
Issa
,
R. I.
,
Gosmann
,
A. D.
, and
Watkind
,
A.
D., 1986, “
The Computation of Compressible and Incompressible Recirculating Flows by a Non-Iterative Scheme
,”
J. Comput. Phys.
,
62
, pp.
66
82
.
28.
Zhang
,
X. R.
,
Maruyama
,
S.
, and
Yamaguchi
,
H.
, 2005, “
Laminar Natural Convection Hear Transfer From a Vertical Baffled Plate Subjected to a Periodic Oscillation
,”
ASME J. Heat Transfer
,
127
, pp.
733
739
.
29.
Zhang
,
X. R.
,
Maruyama
,
S.
, and
Sakai
,
S.
, 2004, “
Numerical Investigation of Laminar Natural Convection on a Heated Vertical Plate Subjected to a Periodic Oscillation
,”
Int. J. Heat Mass Transfer
,
47
, pp.
4439
4448
.
30.
Zhang
,
X. R.
, and
Yamaguchi
,
H.
, 2007, “
Forced Convection Heat Transfer of Supercritical CO2 in a Horizontal Circular Tube
,”
J. Supercrit. Fluids
,
41
, pp.
412
420
.
31.
Dostal
,
V.
,
Hejzlar
,
P.
, and
Driscoll
,
M. J.
, 2006, “
The Supercritical Carbon Dioxide Power Cycle: Comparison to Other Advanced Power Cycles
,”
Nucl. Technol.
,
154
, pp.
283
301
.
32.
Vijayan
,
P. K.
,
Bade
,
M. H.
,
Saha
,
D.
,
Sinha
,
R. K.
, and
Venka Raj
,
V.
, 2004, “
A Generalized Flow Correlation for Single-Phase Natural Circulation Loops
,”
Proceedings of the 17th National and 6th ISHMT/ASME Heat and Mass Transfer Conference
, Kalpakkam, India, January, HMT-2004-C022.
33.
Misale
,
M.
,
Garibaldi
,
P.
,
Passos
,
J. C.
, and
Ghisi de Bitencourt
,
G.
, 2007, “
Experiments in a Single-Phase Natural Circulation Mini-Loop
,”
Exp. Therm. Fluid Sci.
,
31
, pp.
1111
1120
.
You do not currently have access to this content.