A reacting packed-bed undergoing a high-temperature thermochemical solid-gas transformation is considered. The steam- and dry-gasification of carbonaceous materials to syngas is selected as the model reaction. The exact 3D digital geometrical representation of the packed-bed is obtained by computer tomography and used in direct pore-level simulations to characterize its morphological and radiative transport properties as a function of the reaction extent. Two-point correlation functions and mathematical morphology operations are applied to calculate porosities, specific surfaces, particle-size distributions, and representative elementary volumes. The collision-based Monte Carlo method is applied to determine the probability distribution of attenuation path length and direction of incidence at the solid-fluid boundary, which are linked to the extinction coefficient, scattering phase function, and scattering albedo. These effective properties can be then incorporated in continuum models of the reacting packed-bed.

1.
Berryman
,
J.
, and
Blair
,
S.
, 1986, “
Use of Digital Image Analysis to Estimate Fluid Permeability of Porous Material: Application of Two-Point Correlation Functions
,”
J. Appl. Phys.
0021-8979,
60
, pp.
1930
1938
.
2.
Rintoul
,
M. D.
,
Torquato
,
S.
,
Yeong
,
C.
,
Keane
,
D. T.
,
Erramilli
,
S.
,
Jun
,
Y. N.
,
Dabbs
,
D. M.
, and
Aksay
,
I. A.
, 1996, “
Structure and Transport Properties of Porous Magnetic Gel via X-Ray Microtomography
,”
Phys. Rev. E
1063-651X,
54
, pp.
2663
2669
.
3.
Haussener
,
S.
,
Lipiński
,
W.
,
Petrasch
,
J.
,
Wyss
,
P.
, and
Steinfeld
,
A.
, 2009, “
Tomographic Characterization of a Semitransparent-Particle Packed Bed and Determination of its Thermal Radiative Properties
,”
ASME J. Heat Transfer
0022-1481,
131
, p.
072701
.
4.
Petrasch
,
J.
,
Wyss
,
P.
,
Stämpfli
,
R.
, and
Steinfeld
,
A.
, 2008, “
Tomography-Based Multiscale Analyses of the 3D Geometrical Morphology of Reticulated Porous Ceramics
,”
J. Am. Ceram. Soc.
0002-7820,
91
, pp.
2659
2665
.
5.
Haussener
,
S.
,
Coray
,
P.
,
Lipiński
,
W.
,
Wyss
,
P.
, and
Steinfeld
,
A.
, 2010, “
Tomography-Based Heat and Mass Transfer Characterization of Reticulate Porous Ceramics for High-Temperature Processing
,”
ASME J. Heat Transfer
0022-1481,
132
, p.
023305
.
6.
Tancrez
,
M.
, and
Taine
,
J.
, 2004, “
Direct Identification of Absorption and Scattering Coefficients and Phase Function of a Porous Medium by a Monte Carlo Technique
,”
Int. J. Heat Mass Transfer
0017-9310,
47
, pp.
373
383
.
7.
Coquard
,
R.
, and
Baillis
,
D.
, 2004, “
Radiative Characteristics of Opaque Spherical Particle Beds: A New Method of Prediction
,”
J. Thermophys. Heat Transfer
0887-8722,
18
, pp.
178
186
.
8.
Coquard
,
R.
, and
Baillis
,
D.
, 2005, “
Radiative Characteristics of Beds of Spheres Containing an Absorbing and Scattering Medium
,”
J. Thermophys. Heat Transfer
0887-8722,
19
, pp.
226
234
.
9.
Petrasch
,
J.
,
Wyss
,
P.
, and
Steinfeld
,
A.
, 2007, “
Tomography-Based Monte Carlo Determination of Radiative Properties of Reticulate Porous Ceramics
,”
J. Quant. Spectrosc. Radiat. Transf.
0022-4073,
105
, pp.
180
197
.
10.
Zeghondy
,
B.
,
Iacona
,
E.
, and
Taine
,
J.
, 2006, “
Determination of the Anisotropic Radiative Properties of a Porous Material by Radiative Distribution Function Identification (RDFI)
,”
Int. J. Heat Mass Transfer
0017-9310,
49
, pp.
2810
2819
.
11.
Logtenberg
,
S.
, and
Dixon
,
A. G.
, 1998, “
Computational Fluid Dynamics Studies of Fixed Bed Heat Transfer
,”
Chem. Eng. Process.
0255-2701,
37
, pp.
7
21
.
12.
Huai
,
X.
,
Wang
,
W.
, and
Li
,
Z.
, 2007, “
Analysis of the Effective Thermal Conductivity of Fractal Porous Media
,”
Appl. Therm. Eng.
1359-4311,
27
, pp.
2815
2821
.
13.
Krishnan
,
S.
,
Murthy
,
J. Y.
, and
Garimella
,
S. V.
, 2006, “
Direct Simulation of Transport in Open-Cell Metal Foam
,”
ASME J. Heat Transfer
0022-1481,
128
, pp.
793
799
.
14.
Petrasch
,
J.
,
Schrader
,
B.
,
Wyss
,
P.
, and
Steinfeld
,
A.
, 2008, “
Tomography-Based Determination of the Effective Thermal Conductivity of Fluid-Saturated Reticulate Porous Ceramics
,”
ASME J. Heat Transfer
0022-1481,
130
, p.
032602
.
15.
Petrasch
,
J.
,
Meier
,
F.
,
Friess
,
H.
, and
Steinfeld
,
A.
, 2008, “
Tomography Based Determination of Permeability, Dupuit–Forchheimer Coefficient, and Interfacial Heat Transfer Coefficient in Reticulate Porous Ceramics
,”
Int. J. Heat Fluid Flow
0142-727X,
29
, pp.
315
326
.
16.
Boomsma
,
K.
,
Poulikakos
,
D.
, and
Ventikos
,
Y.
, 2003, “
Simulations of Flow Through Open Cell Metal Foams Using an Idealized Periodic Cell Structure
,”
Int. J. Heat Fluid Flow
0142-727X,
24
, pp.
825
834
.
17.
Modest
,
M.
, 2003,
Radiative Heat Transfer
, 2nd ed.,
Academic
,
San Diego, CA
.
18.
Hendricks
,
T. J.
, and
Howell
,
J. R.
, 1996, “
Absorption/Scattering Coefficients and Scattering Phase Functions in Reticulated Porous Ceramics
,”
ASME J. Heat Transfer
0022-1481,
118
, pp.
79
87
.
19.
Kaviany
,
M.
, 1995,
Principles of Heat Transfer in Porous Media
,
Springer-Verlag
,
New York
.
20.
Incropera
,
F.
, and
DeWitt
,
D.
, 2002,
Fundamentals of Heat and Mass Transfer
,
Wiley
,
New York
.
21.
Dullien
,
F.
, 1979,
Porous Media Fluid Transport and Pore Structure
,
Academic
,
New York
.
22.
Macdonald
,
I. F.
,
El-Sayed
,
M. S.
,
Mow
,
K.
, and
Dullien
,
F. A. L.
, 1979, “
Flow Through Porous Media—The Ergun Equation Revisited
,”
Ind. Eng. Chem. Fundam.
0196-4313,
18
, pp.
199
208
.
23.
Piatkowski
,
N.
,
Wieckert
,
C.
, and
Steinfeld
,
A.
, 2009, “
Experimental Investigation of a Packed-Bed Solar Reactor for the Steam-Gasification of Carbonaceous Feedstocks
,”
Fuel Process. Technol.
0378-3820,
90
, pp.
360
366
.
24.
Streun
,
A.
,
Böge
,
A.
,
Dehler
,
M.
,
Gough
,
C.
,
Joho
,
W.
,
Korhonen
,
T.
,
Lüdeke
,
A.
,
Marchand
,
P.
,
Muñoz
,
M.
,
Pedrozzi
,
M.
,
Rivkin
,
L
.,
Schilcher
,
T.
,
Schlott
,
V.
,
Schulz
,
L.
, and
Wrulich
,
A.
, 2001, “
Commissioning of the Swiss Light Source
,”
Proceedings of the 2001 Particle Accelerator Conference
,
P.
Lucas
, and
S.
Webber
, eds.,
IEEE
,
Piscataway, NJ
, pp.
224
226
.
25.
Lu
,
G. Q.
, and
Do
,
D. D.
, 1994, “
Comparison of Structural Models for High-Ash Char Gasification
,”
Carbon
0008-6223,
32
, pp.
247
263
.
26.
2003,
Handbook of Fluidization and Fluid-Particle Systems
,
W. C.
Yang
, ed.,
Marcel Dekker
,
New York
.
27.
Czechowski
,
F.
, and
Kidawa
,
H.
, 1991, “
Reactivity and Susceptibility to Porosity Development of Coal Maceral Chars on Steam and Carbon Dioxide Gasification
,”
Fuel Process. Technol.
0378-3820,
29
, pp.
57
73
.
28.
Vogel
,
H.
, and
Roth
,
H.
, 2001, “
Quantitative Morphology and Network Representation of Soil Pore Structure
,”
Adv. Water Resour.
0309-1708,
24
, pp.
233
242
.
29.
Lipiński
,
W.
,
Petrasch
,
J.
, and
Haussener
,
S.
, 2010, “
Application of the Spatial Averaging Theorem to Radiative Heat Transfer in Two-Phase Media
,”
J. Quant. Spectrosc. Radiat. Transf.
0022-4073,
111
, pp.
253
258
.
30.
Gusarov
,
A. V.
, 2008, “
Homogenization of Radiation Transfer in Two-Phase Media With Irregular Phase Boundaries
,”
Phys. Rev. B
0163-1829,
77
, p.
144201
.
31.
Touloukian
,
Y.
,
Powell
,
R.
,
Ho
,
C.
, and
Klemens
,
P.
, 1970,
Thermophysical Properties of Matter
,
IFI/Plenum
,
New York
.
32.
Jones
,
M. T.
,
Sparks
,
R. S.
, and
Valdes
,
P. J.
, 2007, “
The Climatic Impact of Supervolcanic Ash Blankets
,”
Clim. Dyn.
0930-7575,
29
, pp.
553
564
.
33.
Tien
,
C. L.
, and
Drolen
,
B. L.
, 1987, “
Thermal Radiation in Particulate Media With Dependent and Independent Scattering
,”
Annu. Rev. Numer. Fluid Mech. Heat Transfer
0892-6883,
1
, pp.
1
32
.
34.
Ruan
,
L. M.
,
Qi
,
H.
,
An
,
W.
, and
Tan
,
H. P.
, 2007, “
Inverse Radiation Problem for Determination of Optical Constants of Fly-Ash Particles
,”
Int. J. Thermophys.
0195-928X,
28
, pp.
1322
1341
.
You do not currently have access to this content.