The stationary monochromatic radiative transfer equation is posed in five dimensions, with the intensity depending on both a position in a three-dimensional domain as well as a direction. For nonscattering radiative transfer, sparse finite elements [2007, “Sparse Finite Elements for Non-Scattering Radiative Transfer in Diffuse Regimes,” ICHMT Fifth International Symposium of Radiative Transfer, Bodrum, Turkey; 2008, “Sparse Adaptive Finite Elements for Radiative Transfer,” J. Comput. Phys., 227(12), pp. 6071–6105] have been shown to be an efficient discretization strategy if the intensity function is sufficiently smooth. Compared with the discrete ordinates method, they make it possible to significantly reduce the number of degrees of freedom N in the discretization with almost no loss of accuracy. However, using a direct solver to solve the resulting linear system requires O(N3) operations. In this paper, an efficient solver based on the conjugate gradient method with a subspace correction preconditioner is presented. Numerical experiments show that the linear system can be solved at computational costs that are nearly proportional to the number of degrees of freedom N in the discretization.

1.
Howell
,
J. R.
, 1988, “
Thermal Radiation in Participating Media: The Past, the Present and Possible Futures
,”
ASME J. Heat Transfer
0022-1481,
110
, pp.
1220
1229
.
2.
Modest
,
M. F.
, 2003,
Radiative Heat Transfer
, 2nd ed.,
Academic
,
Amsterdam
.
3.
Ruan
,
L. M.
,
An
,
W.
,
Tan
,
H. P.
, and
Qi
,
H.
, 2007, “
Least-Squares Finite-Element Method of Multidimensional Radiative Heat Transfer in Absorbing and Scattering Media
,”
Numer. Heat Transfer
0149-5720,
51
(
7
), pp.
657
677
.
4.
An
,
W.
,
Ruan
,
L. M.
,
Tan
,
H. P.
, and
Qi
,
H.
, 2006, “
Least-Squares Finite Element Analysis for Transient Radiative Transfer in Absorbing and Scattering Media
,”
ASME J. Heat Transfer
0022-1481,
128
(
5
), pp.
499
503
.
5.
Viskanta
,
R.
, and
Mengüc
,
M. P.
, 1987, “
Radiating Heat Transfer in Combustion Systems
,”
Prog. Energy Combust. Sci.
0360-1285,
13
(
2
), pp.
97
160
.
6.
Widmer
,
G.
, and
Hiptmair
,
R.
, 2007, “
Sparse Finite Elements for Non-Scattering Radiative Transfer in Diffuse Regimes
,”
ICHMT Fifth International Symposium of Radiative Transfer
, Bodrum, Turkey.
7.
Widmer
,
G.
,
Hiptmair
,
R.
, and
Schwab
,
C.
, 2008, “
Sparse Adaptive Finite Elements for Radiative Transfer
,”
J. Comput. Phys.
0021-9991,
227
(
12
), pp.
6071
6105
.
8.
Bungartz
,
H. -J.
, and
Griebel
,
M.
, 2004, “
Sparse Grids
,”
Acta Numerica
0962-4929,
13
, pp.
147
169
.
9.
Zenger
,
C.
, 1990, “
Sparse Grids
,”
Parallel Algorithms for Partial Differential Equations: Proceedings of the Sixth GAMM-Seminar
,
Vieweg-Verlag
,
Braunschweig
, pp.
241
251
.
10.
Cohen
,
A.
, 2003,
Numerical Analysis of Wavelet Methods
,
Elsevier
,
Amsterdam
.
11.
Bungartz
,
H. -J.
, 1997, “
A Multigrid Algorithm for Higher Order Finite Elements on Sparse Grids
,”
Electron. Trans. Numer. Anal.
1097-4067,
6
, pp.
63
77
.
12.
Gradinaru
,
V. C.
, 2002, “
Whitney Elements on Sparse Grids
,” Ph.D. thesis, Eberhard-Karls University, Tübingen.
13.
Xu
,
J.
, 1992, “
Iterative Methods by Space Decomposition and Subspace Correction
,”
SIAM Rev.
0036-1445,
34
(
4
), pp.
581
613
.
14.
Achatz
,
S.
, 2003, “
Adaptive finite Dünngitter-Elemente höherer Ordnung für elliptische partielle Differentialgleichungen mit variablen Koeffizienten
,” Ph.D. thesis, Technische Universität, München.
15.
De Sterck
,
H.
,
Manteuffel
,
T. A.
,
McCormick
,
S. F.
, and
Olson
,
L.
, 2004, “
Least-Squares Finite Element Methods and Algebraic Multigrid Solvers for Linear Hyperbolic PDEs
,”
SIAM J. Sci. Comput.
,
26
(
1
), pp.
31
54
. 0002-7820
16.
Austin
,
T. M.
, and
Manteuffel
,
T. A.
, 2006, “
A Least-Squares Finite Element Method for the Linear Boltzmann Equation With Anisotropic Scattering
,”
SIAM (Soc. Ind. Appl. Math.) J. Numer. Anal.
0036-1429,
44
(
2
), pp.
540
560
.
You do not currently have access to this content.