Virtually all data to date regarding parametric effects of gravity on pool boiling have been inferred from experiments performed in low-g, 1g, or 1.8g conditions. The current work is based on observations of boiling heat transfer obtained over a continuous range of gravity levels (0g1.8g) under subcooled liquid conditions (n-perfluorohexane, ΔTsub=26°C, and 1 atm), two gas concentrations (220 ppm and 1216 ppm), and three heater sizes (full heater-7×7mm2, half heater-7×3.5mm2, and quarter heater-3.5×3.5mm2). As the gravity level changed, a sharp transition in the heat transfer mechanism was observed at a threshold gravity level. Below this threshold (low-g regime), a nondeparting primary bubble governed the heat transfer and the effect of residual gravity was small. Above this threshold (high-g regime), bubble growth and departure dominated the heat transfer and gravity effects became more important. An increase in noncondensable dissolved gas concentration shifted the threshold gravity level to lower accelerations. Heat flux was found to be heater size dependent only in the low-g regime.

1.
Arlabosse
,
P.
,
Reynard
,
C.
, and
Tadrist
,
L.
, 2000, “
Overview of Pool Boiling Heat Transfer Studies in Variable Gravity
,”
Proceedings of the American Institute of Physics Conference
,
504
, pp.
744
750
.
2.
Merte
,
H.
, Jr.
, and
Clark
,
J. A.
, 1961, “
Pool Boiling in Accelerating Systems
,”
ASME J. Heat Transfer
0022-1481,
83
, pp.
233
242
.
3.
Costello
,
C. P.
, and
Tuthill
,
W. E.
, 1961, “
Effect of Acceleration on Nucleate Pool Boiling
,”
Chem. Eng. Prog., Symp. Ser.
0069-2948,
57
, pp.
189
196
.
4.
Di Marco
,
P.
, 2003, “
Review of Reduced Gravity Boiling Heat Transfer: European Research
,”
J. Jpn. Soc. Microgravity Appl.
0915-3616,
20
(
4
), pp.
252
263
.
5.
Kim
,
J.
, 2003, “
Review of Reduced Gravity Boiling Heat Transfer: US Research
,”
J. Jpn. Soc. Microgravity Appl.
0915-3616,
20
(
4
), pp.
264
271
.
6.
Ohta
,
H.
, 2003, “
Review of Reduced Gravity Boiling Heat Transfer: Japanese Research
,”
J. Jpn. Soc. Microgravity Appl.
0915-3616,
20
(
4
), pp.
272
285
.
7.
Siegel
,
R.
, 1968, “
Effects of Reduced Gravity on Heat Transfer
,”
Adv. Heat Transfer
0065-2717,
4
, pp.
143
227
.
8.
Verkin
,
B. J.
, and
Kirichenko
,
Y. A.
, 1976, “
Heat Transfer Under Reduced Gravity Conditions
,”
Acta Astronaut.
0094-5765,
3
, pp.
471
480
.
9.
Straub
,
J.
,
Zell
,
M.
, and
Vogel
,
B.
, 1990, “
Pool Boiling in Reduced Gravity Field
,”
Proceedings of the 9th International Heat Transfer Conference
, Jerusalem, Israel,
Hemisphere
, pp.
91
112
.
10.
Oka
,
T.
,
Abe
,
Y.
,
Tanak
,
K.
,
Mori
,
Y. H.
, and
Nagashima
,
A.
, 1992, “
Observational Study of Pool Boiling in Microgravity
,”
JSME Int. J., Ser. II
0914-8817,
35
(
2
), pp.
280
.
11.
Kim
,
J.
,
Benton
,
J. F.
, and
Wisniewski
,
D.
, 2002, “
Pool Boiling Heat Transfer on Small Heaters: Effect of Gravity and Subcooling
,”
Int. J. Heat Mass Transfer
0017-9310,
45
(
9
), pp.
3921
3934
.
12.
Straub
,
J.
, and
Vogel
,
B.
, 1992, “
Boiling Under Microgravity Conditions
,”
Proceedings of the First European Symposium in Space
, Paper No. ESA SP-353, p.
269
.
13.
Ohta
,
H.
,
Kawaji
,
M.
,
Azuma
,
H.
,
Kakehi
,
K.
, and
Morita
,
T. S.
, 1998, “
Heat Transfer in Nucleate Pool Boiling Under Microgravity Condition
,”
Proceedings of the 11th International Heat Transfer Conference
, Kyongju, Korea, Vol.
2
, pp.
401
406
.
14.
Kim
,
J.
, and
Benton
,
J. F.
, 2002, “
Highly Subcooled Pool Boiling Heat Transfer at Various Gravity Levels
,”
Int. J. Heat Fluid Flow
0142-727X,
23
, pp.
497
508
.
15.
Lee
,
H. S.
, and
Merte
,
H.
, Jr.
, 1997, “
Pool Boiling Curve in Microgravity
,”
J. Thermophys. Heat Transfer
0887-8722,
11
(
2
), pp.
216
222
.
16.
DeLombard
,
R.
,
McQuillen
,
J.
, and
Chao
,
D.
, 2008, “
Boiling Experiment Facility for Heat Transfer Studies in Microgravity
,”
46th AIAA Aerospace Sciences Meeting and Exhibit
, Reno, NV, Jan. 7–10.
17.
Fritz
,
W.
, 1935, “
Berechnung des Maximalvolume von Dampfblasen
,”
Phys. Z.
0369-982X,
36
, pp.
379
388
.
18.
Cole
,
R.
, 1967, “
Bubble Frequencies and Departure Volumes at Subatmospheric Pressures
,”
AIChE J.
0001-1541,
13
, pp.
779
783
.
19.
Siegel
,
R.
, and
Keshock
,
F. G.
, 1964, “
Effects of Reduced Gravity on Nucleate Boiling Bubble Dynamics in Saturated Water
,”
AIChE J.
0001-1541,
10
(
4
), pp.
509
517
.
20.
Son
,
G.
,
Dhir
,
V. K.
, and
Ramanujapu
,
N.
, 1999, “
Dynamics and Heat Transfer Associated With a Single Bubble During Nucleate Boiling on a Horizontal Surface
,”
ASME J. Heat Transfer
0022-1481,
121
(
3
), pp.
623
631
.
21.
Malenkov
,
I. G.
, 1971, “
The Frequency of Vapor Bubble Separation as a Function of Bubble Size
,”
Fluid Mech.-Sov. Res.
0096-0764,
1
, pp.
36
42
.
22.
Rohsenow
,
W. M.
, 1962, “
A Method of Correlating Heat Transfer Data for Surface Boiling of Liquids
,”
Trans. ASME, Ser. B
0022-0817,
84
, pp.
969
976
.
23.
Stephan
,
K.
, and
Abdelsalam
,
M.
, 1980, “
Heat Transfer Correlations for Natural Convection Boiling
,”
Int. J. Heat Mass Transfer
0017-9310,
23
, pp.
73
87
.
24.
Kutateladze
,
S. S.
, 1948, “
On the Transition Film Boiling Under Natural Convection
,”
Kotloturbostroenie
, Vol.
3
, pp.
10
12
.
25.
Zuber
,
N.
, 1959, “
Hydrodynamic Aspects of Boiling Heat Transfer
,” AEC Report No. AECU-4439.
26.
Straub
,
J.
, 2002, “
Origin and Effect of Thermocapillary Convection in Subcooled Boiling: Observations and Conclusions From Experiments Performed at Microgravity
,”
Ann. N.Y. Acad. Sci.
0077-8923,
974
, pp.
348
363
.
27.
Marek
,
R.
, and
Straub
,
J.
, 2001, “
The Origin of Thermocapillary Convection in Subcooled Nucleate Pool Boiling
,”
Int. J. Heat Mass Transfer
0017-9310,
44
, pp.
619
632
.
28.
Barthes
,
M.
,
Reynard
,
C.
,
Santini
,
R.
, and
Tadrist
,
L.
, 2007, “
Non-Condensable Gas Influence on the Marangoni Convection During a Single Vapor Bubble Growth in a Subcooled Liquid
,”
EPL
0295-5075,
77
, pp.
14001
.
29.
Henry
,
C. D.
,
Kim
,
J.
, and
McQuillen
,
J.
, 2006, “
Dissolved Gas Effects on Thermocapillary Convection During Subcooled Boiling in Reduced Gravity Environments
,”
Int. J. Heat Mass Transfer
0017-9310,
42
, pp.
919
928
.
30.
Raj
,
R.
, and
Kim
,
J.
, 2009, “
Thermocapillary Convection During Subcooled Boiling in Reduced Gravity Environments
,”
Ann. N.Y. Acad. Sci.
0077-8923,
1161
, pp.
173
181
.
31.
Rule
,
T. D.
, and
Kim
,
J.
, 1999, “
Heat Transfer Behavior on Small Heaters During Pool Boiling of FC-72
,”
ASME J. Heat Transfer
0022-1481,
121
(
2
), pp.
386
393
.
32.
Product Manual, FLORINERT® Electronic Liquid, 3M Center, St. Paul, MN.
33.
Pletser
,
V.
,
Pacros
,
A.
, and
Minster
,
O.
, 2008, “
International Heat and Mass Transfer Experiments on the 48th ESA Parabolic Flight Campaign of March 2008
,”
Microgravity Sci. Technol.
0938-0108,
20
,
177
182
.
34.
Incropera
,
F. P.
,
Dewitt
,
D. P.
,
Bergman
,
T. T.
, and
Lavine
,
A. S.
, 2007,
Fundamentals of Heat and Mass Transfer
, 6th ed.,
Wiley
,
New York
, Chap. 1, p.
8
.
35.
Aparajith
,
H. S.
,
Dhir
,
V. K.
,
Warrier
,
G.
, and
Son
,
G.
, 2003, “
Numerical Simulation and Experimental Validation of the Dynamics of Multiple Bubble Merger During Pool Boiling Under Microgravity Conditions
,”
Microgravity Transport Processes Conference
, Davos, Switzerland, Sep. 14–19.
36.
You
,
S. M.
,
Simon
,
T. W.
,
Bar-Cohen
,
A.
, and
Hong
,
Y. S.
, 1995, “
Effects of Dissolved Gas on Pool Boiling of a Highly Wetting Fluid
,”
ASME J. Heat Transfer
0022-1481,
117
, pp.
687
692
.
37.
Rainey
,
K. N.
,
You
,
S. M.
, and
Lee
,
S.
, 2003, “
Effect of Pressure, Subcooling, and Dissolved Gas on Pool Boiling Heat Transfer From Microporous Surfaces in FC-72
,”
ASME J. Heat Transfer
0022-1481,
125
, pp.
75
83
.
38.
Honda
,
H.
,
Takamastu
,
H.
, and
Wei
,
J. J.
, 2002, “
Enhanced Boiling of FC-72 on Silicon Chips With Micro-Pin-Fins and Submicron-Scale Roughness
,”
ASME J. Heat Transfer
0022-1481,
124
(
2
), pp.
383
390
.
39.
Henry
,
C. D.
, and
Kim
,
J.
, 2004, “
A Study of the Effects of Heater Size, Subcooling, and Gravity Level on Pool Boiling Heat Transfer
,”
Int. J. Heat Fluid Flow
0142-727X,
25
, pp.
262
273
.
You do not currently have access to this content.