We synthesize eight kinds of nanofluids with controllable microstructures by a chemical solution method (CSM) and develop a theory of macroscale heat conduction in nanofluids. By the CSM, we can easily vary and manipulate nanofluid microstructures through adjusting synthesis parameters. Our theory shows that heat conduction in nanofluids is of a dual-phase-lagging type instead of the postulated and commonly used Fourier heat conduction. Due to the coupled conduction of the two phases, thermal waves and possibly resonance may appear in nanofluid heat conduction. Such waves and resonance are responsible for the conductivity enhancement. Our theory also generalizes nanofluids into thermal-wave fluids in which heat conduction can support thermal waves. We emulsify olive oil into distilled water to form a new type of thermal-wave fluids that can support much stronger thermal waves and resonance than all reported nanofluids, and consequently extraordinary water conductivity enhancement (up to 153.3%) by adding some olive oil that has a much lower conductivity than water.

1.
Choi
,
S. U. S.
, 1995, “
Enhancing Thermal Conductivity of Fluids With Nanoparticles
,”
Developments and Applications of Non-Newtonian Flows
,
D. A.
Singer
and
H. P.
Wang
, eds.,
ASME
,
New York
, FED 231, pp.
99
105
.
2.
Choi
,
S. U. S.
,
Zhang
,
Z. G.
, and
Keblinski
,
P.
, 2004, “
Nanofluids
,”
Encyclopedia of Nanoscience and Nanotechnology
,
H. S.
Nalwa
, ed., Vol.
6
,
American Scientific Publishers
,
New York
, pp.
757
773
.
3.
Eastman
,
J. A.
,
Phillpot
,
S. R.
,
Choi
,
S. U. S.
, and
Keblinski
,
P.
, 2004, “
Thermal Transport in Nanofluids
,”
Annu. Rev. Mater. Res.
1531-7331,
34
, pp.
219
246
.
4.
Keblinski
,
P.
,
Eastman
,
J. A.
, and
Cahill
,
D. G.
, 2005, “
Nanofluids for Thermal Transport
,”
Mater. Today
1369-7021,
8
(
6
), pp.
36
44
.
5.
Phelan
,
P. E.
,
Bhattacharya
,
P.
, and
Prasher
,
R. S.
, 2005, “
Nanofluids for Heat Transfer Applications
,”
Annu. Rev. Heat Transfer
1049-0787,
14
, pp.
255
275
.
6.
Peterson
,
G. P.
, and
Li
,
C. H.
, 2006, “
Heat and Mass Transfer in Fluids With Nanoparticle Suspensions
,”
Adv. Heat Transfer
0065-2717,
39
, pp.
257
376
.
7.
Das
,
S. K.
,
Choi
,
S. U. S.
,
Yu
,
W. H.
, and
Pradeep
,
T.
, 2008,
Nanofluids: Science and Technology
,
Wiley
,
Hoboken, NJ
.
8.
Jang
,
S. P.
, and
Choi
,
S. U. S.
, 2007, “
Effects of Various Parameters on Nanofluid Thermal Conductivity
,”
ASME J. Heat Transfer
0022-1481,
129
(
5
), pp.
617
623
.
9.
Buongiorno
,
J.
, 2006, “
Convective Transport in Nanofluids
,”
ASME J. Heat Transfer
0022-1481,
128
(
3
), pp.
240
250
.
10.
Choi
,
S. U. S.
, and
Eastman
,
J. A.
, 2001, “
Enhanced Heat Transfer Using Nanofluids
,” U.S. Patent No. 6,221,275 B1.
11.
Eastman
,
J. A.
,
Choi
,
S. U. S.
,
Li
,
S.
,
Yu
,
W.
, and
Thompson
,
L. J.
, 2001, “
Anomalously Increased Effective Thermal Conductivities of Ethylene Glycol-Based Nanofluids Containing Copper Nanoparticles
,”
Appl. Phys. Lett.
0003-6951,
78
(
6
), pp.
718
720
.
12.
Kostic
,
M. M.
, 2006, “
Critical Issues and Application Potentials in Nanofluids Research
,”
Proceedings of Multifunctional Nanocomposites
, Paper No. MN2006-17036.
13.
Chang
,
H.
,
Tsung
,
T. T.
,
Chen
,
L. C.
,
Yang
,
Y. C.
,
Lin
,
H. M.
,
Lin
,
C. K.
, and
Jwo
,
C. S.
, 2005, “
Nanoparticle Suspension Preparation Using the Arc Spray Nanoparticle Synthesis System Combined With Ultrasonic Vibration and Rotating Electrode
,”
Int. J. Adv. Manuf. Technol.
0268-3768,
26
(
5–6
), pp.
552
558
.
14.
Lo
,
C. H.
,
Tsung
,
T. T.
,
Chen
,
L. C.
,
Su
,
C. H.
, and
Lin
,
H. M.
, 2005, “
Fabrication of Copper Oxide Nanofluid Using Submerged Arc Nanoparticle Synthesis System (SANSS)
,”
J. Nanopart. Res.
1388-0764,
7
(
2–3
), pp.
313
320
.
15.
Lo
,
C. H.
,
Tsung
,
T. T.
, and
Chen
,
L. C.
, 2005, “
Shaped-Controlled Synthesis of Cu-Based Nanofluid Using Submerged Arc Nanoparticle Synthesis System (SANSS)
,”
J. Cryst. Growth
,
277
(
1–4
), pp.
636
642
. 0022-0248
16.
Kim
,
S. H.
,
Choi
,
S. R.
, and
Kim
,
D.
, 2007, “
Thermal Conductivity of Metal-Oxide Nanofluids: Particle Size Dependence and Effect of Laser Irradiation
,”
ASME J. Heat Transfer
0022-1481,
129
(
3
), pp.
298
307
.
17.
Rusconi
,
R.
,
Rodari
,
E.
, and
Piazza
,
R.
, 2006, “
Optical Measurements of the Thermal Properties of Nanofluids
,”
Appl. Phys. Lett.
0003-6951,
89
(
26
), p.
261916
.
18.
Putnam
,
S. A.
,
Cahill
,
D. G.
,
Braun
,
P. V.
,
Ge
,
Z. B.
, and
Shimmin
,
R. G.
, 2006, “
Thermal Conductivity of Nanoparticle Suspensions
,”
J. Appl. Phys.
0021-8979,
99
, p.
084308
.
19.
Eapen
,
J.
,
Williams
,
W. C.
,
Buongiorno
,
J.
,
Hu
,
L. W.
, and
Yip
,
S.
, 2007, “
Mean-Field Versus Microconvection Effects in Nanofluid Thermal Conduction
,”
Phys. Rev. Lett.
0031-9007,
99
, p.
095901
.
20.
Xuan
,
Y. M.
,
Li
,
Q.
,
Zhang
,
X.
, and
Hu
,
W.
, 2003, “
Aggregation Structure and Thermal Conductivity of Nanofluids
,”
AIChE J.
0001-1541,
49
(
4
), pp.
1038
1043
.
21.
Koo
,
J.
, and
Kleinstreuer
,
C.
, 2004, “
A New Thermal Conductivity Model for Nanofluids
,”
J. Nanopart. Res.
1388-0764,
6
(
6
), pp.
577
588
.
22.
Jang
,
S. P.
, and
Choi
,
S. U. S.
, 2004, “
Role of Brownian Motion in the Enhanced Thermal Conductivity of Nanofluids
,”
Appl. Phys. Lett.
0003-6951,
84
(
21
), pp.
4316
4318
.
23.
Bhattacharya
,
P.
,
Saha
,
S. K.
,
Yadav
,
A.
,
Phelan
,
P. E.
, and
Prasher
,
R. S.
, 2004, “
Brownian Dynamics Simulation to Determine the Effect Thermal Conductivity of Nanofluids
,”
J. Appl. Phys.
0021-8979,
95
, pp.
6492
6494
.
24.
Prasher
,
R.
,
Bhattacharya
,
P.
, and
Phelan
,
P. E.
, 2005, “
Thermal Conductivity of Nanoscale Colloidal Solutions (Nanofluids)
,”
Phys. Rev. Lett.
0031-9007,
94
, p.
025901
.
25.
Prasher
,
R.
,
Bhattacharya
,
P.
, and
Phelan
,
P. E.
, 2006, “
Brownian-Motion-Based Convective-Conductive Model for the Effective Thermal Conductivity of Nanofluids
,”
ASME J. Heat Transfer
0022-1481,
128
(
6
), pp.
588
595
.
26.
Yu
,
W.
, and
Choi
,
S. U. S.
, 2003, “
The Role of Interfacial Layers in the Enhanced Thermal Conductivity of Nanofluids: A Renovated Maxwell Model
,”
J. Nanopart. Res.
1388-0764,
5
(
1–2
), pp.
167
171
.
27.
Yu
,
W.
, and
Choi
,
S. U. S.
, 2004, “
The Role of Interfacial Layers in the Enhanced Thermal Conductivity of Nanofluids: A Renovated Hamilton-Crosser Model
,”
J. Nanopart. Res.
1388-0764,
6
(
4
), pp.
355
361
.
28.
Xue
,
L.
,
Keblinski
,
P.
,
Phillpot
,
S. R.
,
Choi
,
S. U. S.
, and
Eastman
,
J. A.
, 2004, “
Effect of Liquid Layering at the Liquid-Solid Interface on Thermal Transport
,”
Int. J. Heat Mass Transfer
0017-9310,
47
(
19–20
), pp.
4277
4284
.
29.
Xie
,
H.
,
Fujii
,
M.
, and
Zhang
,
X.
, 2005, “
Effect of Interfacial Nanolayer on the Effective Thermal Conductivity of Nanoparticle-Fluid Mixture
,”
Int. J. Heat Mass Transfer
,
48
(
14
), pp.
2926
2932
. 0017-9310
30.
Ren
,
Y.
,
Xie
,
H.
, and
Cai
,
A.
, 2005, “
Effective Thermal Conductivity of Nanofluids Containing Spherical Nanoparticles
,”
J. Phys. D
0022-3727,
38
(
21
), pp.
3958
3961
.
31.
Leong
,
K. C.
,
Yang
,
C.
, and
Murshed
,
S. M. S.
, 2006, “
A Model for the Thermal Conductivity of Nanofluids: The Effect of Interfacial Layer
,”
J. Nanopart. Res.
1388-0764,
8
(
2
), pp.
245
254
.
32.
Wang
,
B. X.
,
Zhou
,
L. P.
, and
Peng
,
X. F.
, 2003, “
A Fractal Model for Predicting the Effective Thermal Conductivity of Liquid With Suspension of Nanoparticles
,”
Int. J. Heat Mass Transfer
0017-9310,
46
(
14
), pp.
2665
2672
.
33.
Prasher
,
R.
,
Phelan
,
P. E.
, and
Bhattacharya
,
P.
, 2006, “
Effect of Aggregation Kinetics on the Thermal Conductivity of Nanoscale Colloidal Solutions (Nanofluid)
,”
Nano Lett.
1530-6984,
6
(
7
), pp.
1529
1534
.
34.
Chen
,
G.
, 2001, “
Balistic-Diffusive Heat-Conduction Equations
,”
Phys. Rev. Lett.
0031-9007,
86
(
11
), pp.
2297
2300
.
35.
Vadasz
,
J. J.
,
Govender
,
S.
, and
Vadasz
,
P.
, 2005, “
Heat Transfer Enhancement in Nanofluids Suspensions: Possible Mechanisms and Explanations
,”
Int. J. Heat Mass Transfer
0017-9310,
48
(
13
), pp.
2673
2683
.
36.
Vadasz
,
P.
, 2006, “
Heat Conduction in Nanofluid Suspensions
,”
ASME J. Heat Transfer
0022-1481,
128
(
5
), pp.
465
477
.
37.
Whitaker
,
S.
, 1999,
The Method of Volume Averaging
,
Kluwer
,
Dordrecht
, p.
219
.
38.
Wang
,
L. Q.
, 2000, “
Flows Through Porous Media: A Theoretical Development at Macroscale
,”
Transp. Porous Media
,
39
(
1
), pp.
1
24
. 0169-3913
39.
Wang
,
L. Q.
,
Xu
,
M. T.
, and
Wei
,
X. H.
, 2008, “
Multiscale Theorems
,”
Adv. Chem. Eng.
0065-2377,
34
, pp.
175
468
.
40.
Wang
,
L. Q.
, 1994, “
Generalized Fourier Law
,”
Int. J. Heat Mass Transfer
,
37
(
17
), pp.
2627
2634
. 0017-9310
41.
Wang
,
L. Q.
,
Zhou
,
X. S.
, and
Wei
,
X. H.
, 2008,
Heat Conduction: Mathematical Models and Analytical Solutions
,
Springer-Verlag
,
Berlin
.
42.
Wang
,
L. Q.
, and
Wei
,
X. H.
, 2008, “
Equivalence Between Dual-Phase-Lagging and Two-Phase-System Heat Conduction Processes
,”
Int. J. Heat Mass Transfer
,
51
(
7–8
), pp.
1751
1756
. 0017-9310
43.
Tzou
,
D. Y.
, 1997,
Macro-to Microscale Heat Transfer: The Lagging Behavior
,
Taylor & Francis
,
Washington, D.C.
44.
Xu
,
M. T.
, and
Wang
,
L. Q.
, 2002, “
Thermal Oscillation and Resonance in Dual-Phase-Lagging Heat Conduction
,”
Int. J. Heat Mass Transfer
0017-9310,
45
(
5
), pp.
1055
1061
.
45.
Aichlmayr
,
H. T.
, and
Kulacki
,
F. A.
, 2006, “
The Effective Thermal Conductivity of Saturated Porous Media
,”
Adv. Heat Transfer
0065-2717,
39
, pp.
377
460
.
46.
Hoar
,
T. P.
, and
Schulman
,
J. H.
, 1943, “
Transparent Water-in-Oil Dispersions: The Oleopathic Hydro-Micelle
,”
Nature (London)
0028-0836,
152
, pp.
102
103
.
47.
Kumar
,
P.
, and
Mittal
,
K.
, 1999,
Handbook of Microemulsion Science and Technology
,
CRC
,
Boca Raton, FL
.
48.
Yang
,
B.
, and
Han
,
Z. H.
, 2006, “
Thermal Conductivity Enhancement in Water-in-FC72 Nanoemulsion Fluids
,”
Appl. Phys. Lett.
0003-6951,
88
(
26
), p.
261914
.
49.
Maxwell
,
J. C.
, 1904,
A Treatise on Electricity and Magnetism
,
Oxford University Press
,
Cambridge
.
You do not currently have access to this content.