The effective thermal conductivity of reticulate porous ceramics (RPCs) is determined based on the 3D digital representation of their pore-level geometry obtained by high-resolution multiscale computer tomography. Separation of scales is identified by tomographic scans at 30μm digital resolution for the macroscopic reticulate structure and at 1μm digital resolution for the microscopic strut structure. Finite volume discretization and successive over-relaxation on increasingly refined grids are applied to solve numerically the pore-scale conduction heat transfer for several subsets of the tomographic data with a ratio of fluid-to-solid thermal conductivity ranging from 104 to 1. The effective thermal conductivities of the macroscopic reticulate structure and of the microscopic strut structure are then numerically calculated and compared with effective conductivity model predictions with optimized parameters. For the macroscale reticulate structure, the models by Dul’nev, Miller, Bhattachary and Boomsma and Poulikakos, yield satisfactory agreement. For the microscale strut structure, the classical porosity-based correlations such as Maxwell’s upper bound and Loeb’s models are suitable. Macroscopic and microscopic effective thermal conductivities are superimposed to yield the overall effective thermal conductivity of the composite RPC material. Results are limited to pure conduction and stagnant fluids or to situations where the solid phase dominates conduction heat transfer.

1.
Lange
,
F.
, and
Miller
,
K.
, 1987, “
Open-Cell, Low-Density Ceramics Fabricated From Reticulated Polymer Substrates
,”
Adv. Ceram. Mater.
0883-5551,
2
(
4
), pp.
827
831
.
2.
van Setten
,
B. A.
,
Bremmer
,
J.
,
Jelles
,
S. J.
,
Makkee
,
M.
, and
Moulijn
,
J. A.
, 1999, “
Ceramic Foam as a Potential Molten Salt Oxidation Catalyst Support in the Removal of Soot From Diesel Exhaust Gas
,”
Catal. Today
0920-5861,
53
(
4
), pp.
613
621
.
3.
Dhamrat
,
R.
, and
Ellzey
,
J.
, 2005, “
Numerical and Experimental Study of the Conversion of Methane to Hydrogen in a Porous Media Reactor
,”
Combust. Flame
0010-2180,
144
(
4
), pp.
698
709
.
4.
Howell
,
J.
,
Hall
,
M.
, and
Ellzey
,
J.
, 1999, “
Combustion of Hydrocarbon Fuels Within Porous Inert Media
,”
Prog. Energy Combust. Sci.
0360-1285,
22
(
2
), pp.
121
145
.
5.
Barra
,
A.
,
Diepvens
,
G.
,
Ellzey
,
J.
, and
Henneke
,
M.
, 2003, “
Numerical Study of the Effects of Material Properties on Flame Stabilization in a Porous Burner
,”
Combust. Flame
0010-2180,
134
, pp.
369
379
.
6.
Barra
,
A.
, and
Ellzey
,
J.
, 2004, “
Heat Recirculation and Heat Transfer in Porous Burners
,”
Combust. Flame
0010-2180,
137
(
1–2
), pp.
230
241
.
7.
Fend
,
T.
,
Hoffschmidt
,
B.
,
Pitz-Paal
,
R.
,
Reutter
,
O.
, and
Rietbrock
,
P.
, 2004, “
Porous Materials as Open Volumetric Solar Receivers: Experimental Determination of Thermophysical and Heat Transfer Properties
,”
Energy
0360-5442,
29
(
5–6
), pp.
823
833
.
8.
Steinfeld
,
A.
, and
Palumbo
,
R.
, 2001, “
Solar Thermochemical Process Technology
,”
Encyclopedia of Physical Science and Technology
,
R. A.
Meyers
, ed.
Academic
,
New York
, pp.
237
256
.
9.
Petrasch
,
J.
, and
Steinfeld
,
A.
, 2006, “
Dynamics of a Solar Thermochemical Reactor for Steam Reforming of Methane
,”
Chem. Eng. Sci.
0009-2509,
62
(
16
), pp.
4214
4228
.
10.
Kaviany
,
M.
, 1995,
Principles of Heat Transfer in Porous Media
,
Springer-Verlag
,
New York
.
11.
Whitaker
,
S.
, 1999,
The Method of Volume Averaging
,
Kluwer
,
Dordrecht
.
12.
Touloukian
,
Y. S.
,
Powell
,
R. W.
,
Ho
,
C. Y.
, and
Klemens
,
P. G.
, 1970,
Thermal Conductivity Nonmetallic Solids
,
IFI/Plenum
,
New York
.
13.
Wyllie
,
M. R. J.
, and
Southwick
,
P. F.
, 1954, “
An Experimental Investigation of the S. P., and Resistivity Phenomena in Dirty Sands
,”
J. Alloys Compd.
0925-8388,
6
, pp.
44
57
.
14.
Woodside
,
W.
, and
Messmer
,
J. H.
, 1961, “
Thermal Conductivity of Porous Media. I. Unconsolidated Sands
,”
J. Appl. Phys.
0021-8979,
32
(
9
), pp.
1688
1699
.
15.
Woodside
,
W.
, and
Messmer
,
J. H.
, 1961, “
Thermal Conductivity of Porous Media. II. Consolidated Rocks
,”
J. Appl. Phys.
0021-8979,
32
(
9
), pp.
1699
1706
.
16.
Sullins
,
A. D.
, and
Daryabeigi
,
K.
, 2001, “
Effective Thermal Conductivity of High Porosity Open Cell Nickel Foam
,”
35th AIAA Thermophysics Conference
,
Anaheim
,
CA
, Jun. 11–14, 2001.
17.
Tseng
,
C.
,
Yamaguchi
,
M.
, and
Ohmori
,
T.
, 1997, “
Thermal Conductivity of Polyurethane Foams From Room Temperature to 20K
,”
Cryogenics
0011-2275,
37
(
6
), pp.
305
312
.
18.
Maxwell
,
J. C.
, 1891,
A Treatise on Electricity and Magnetism
,
Clarendon
,
Oxford
.
19.
Russell
,
H. W.
, 1935, “
Principles of Heat Flow in Porous Insulators
,”
J. Am. Ceram. Soc.
0002-7820,
18
, pp.
1
5
.
20.
Dul’nev
,
G. N.
, 1965, “
Heat Transfer Through Solid Disperse Systems
,”
J. Eng. Phys.
0022-0841,
9
(
3
), pp.
399
404
.
21.
Dul’nev
,
G. N.
, and
Komkova
,
L. A.
, 1965, “
Analysis of Experimental Data on the Heat Conductivity of Solid Porous Systems
,”
J. Eng. Phys.
0022-0841,
9
(
4
), pp.
517
519
.
22.
Calmidi
,
V. V.
, and
Mahajan
,
R. L.
, 1999, “
The Effective Thermal Conductivity of High Porosity Fibrous Metal Foams
,”
ASME J. Heat Transfer
0022-1481,
121
(
2
), pp.
466
471
.
23.
Bhattacharya
,
A.
,
Calmidi
,
V.
, and
Mahajan
,
R.
, 1999, “
An Analytical-Experimental Study for the Determination of the Effective Thermal Conductivity of High Porosity Fibrous Foams
,”
Application of Porous Media Methods for Engineered Materials
,
R. M.
Sullivan
, ed., AMD Vol. 233,
ASME
,
New York
, pp.
13
20
.
24.
Boomsma
,
K.
, and
Poulikakos
,
D.
, 2001, “
On the Effective Thermal Conductivity of a Three-Dimensionally Structured Fluid-Saturated Metal Foam
,”
Int. J. Heat Fluid Flow
0142-727X,
44
, pp.
827
836
.
25.
Miller
,
M. N.
, 1969, “
Bounds for Effective Electrical, Thermal, and Magnetic Properties of Heterogeneous Materials
,”
J. Math. Phys.
0022-2488,
10
(
11
), pp.
1988
2004
.
26.
Petrasch
,
J.
,
Wyss
,
P.
, and
Steinfeld
,
A.
, 2007, “
Tomography-Based Monte Carlo Determination of Radiative Properties of Reticulate Porous Ceramics
,”
J. Quant. Spectrosc. Radiat. Transf.
0022-4073,
105
, pp.
180
197
.
27.
Zeghondy
,
B.
,
Iacona
,
E.
, and
Taine
,
J.
, 2006, “
Determination of the Anisotropic Radiative Properties of a Porous Material by Radiative Distribution Function Identification (RDFI)
,”
Int. J. Heat Mass Transfer
0017-9310,
49
, pp.
2810
2819
.
28.
Zeghondy
,
B.
,
Iacona
,
E.
, and
Taine
,
J.
, 2006, “
Experimental and RDFI Calculated Radiative Properties of Mullite Foam
,”
Int. J. Heat Mass Transfer
0017-9310,
49
, pp.
3702
3703
.
29.
Widjajakusuma
,
J.
,
Manwart
,
C.
,
Biswal
,
B.
, and
Hilfer
,
R.
, 1999, “
Exact and Approximate Calculations for the Conductivity of Sandstone
,”
Physica A
0378-4371,
270
, pp.
325
331
.
30.
Widjajakusuma
,
J.
,
Biswal
,
B.
, and
Hilfer
,
R.
, 2003, “
Quantitative Comparison of Mean Field Mixing Laws for Conductivity and Dielectric Constants of Porous Media
,”
Physica A
0378-4371,
318
, pp.
319
333
.
31.
Krishnan
,
S.
,
Murthy
,
J. Y.
, and
Garimella
,
S. V.
, 2006, “
Direct Simulation of Transport in Open-Cell Metal Foam
,”
ASME J. Heat Transfer
0022-1481,
128
, pp.
793
799
.
34.
Weszka
,
J.
, 1978, “
A Survey of Threshold Selection Techniques
,”
Comput. Graph. Image Process.
0146-664X,
7
, pp.
259
265
.
35.
Truong
,
H. V.
, and
Zinsmeister
,
G. E.
, 1978, “
Experimental Study of Heat Transfer in Layered Composites
,”
Int. J. Heat Mass Transfer
0017-9310,
21
, pp.
905
909
.
36.
Batchelor
,
G. K.
, and
O’Brien
,
R. W.
, 1977, “
Thermal or Electrical Conduction Through a Granular Material
,”
Proc. R. Soc. London, Ser. A
1364-5021,
355
, pp.
313
333
.
37.
Quintard
,
M.
, and
Whitaker
,
S.
, 2000, “
One- and Two Equation Models in Two-Phase Systems
,”
Adv. Heat Transfer
0065-2717,
23
, pp.
369
464
.
38.
Patankar
,
S.
, 1980,
Numerical Heat Transfer and Fluid Flow
,
Taylor & Francis
,
London
.
39.
Press
,
W. H.
,
Teukolsky
,
S. A.
,
Vetterling
,
W. T.
, and
Flannery
,
B. P.
, 1992,
Numerical Recipes in C: The Art of Scientific Computing
,
Cambridge University Press
,
Cambridge
.
40.
Roach
,
P. J.
, 1998,
Verification and Validation in Computational Science and Engineering
,
Hermosa
,
Albuquerque
.
41.
Hsu
,
C. T.
,
Cheng
,
P.
, and
Wong
,
K. W.
, 1994, “
Modified Zehner-Schlünder Models for Stagnant Thermal Conductivity of Porous Media
,”
Int. J. Heat Mass Transfer
0017-9310,
37
(
17
), pp.
2751
2759
.
42.
Bruggeman
,
D. A. G.
, 1935, “
Berechnung Verschiedener Physikalischer Konstanten von Heterogenen Substanzen, I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus Isotropen Substanzen
,”
Ann. Phys.
0003-3804,
5
(
24
), pp.
636
679
.
43.
Loeb
,
A. L.
, 1954, “
Thermal Conductivity: VIII. A Theory of Thermal Conductivity of Porous Materials
,”
J. Am. Ceram. Soc.
0002-7820,
37
(
2
), pp.
96
99
.
44.
Ribaud
, 1937, “
Conductibilité Thermique des Materiaux Poreux et Pulverulents. Etude Théorique
,”
Chaleur et Industrie
,
18
, pp.
36
43
.
45.
Eucken
,
A.
, 1932, “
Die Wärmeleitfähigkeit Keramischer, Fester Stoffe—Ihre Berechnung aus der Wärmeleitfähigkeit der Bestandteile
,”
VDI Forschungsheft 353, Beilage zu, Forschung auf dem gebiet des Ingenieurwesens
, Ausgabe B, Band 3.
46.
Odelevskii
,
V. I.
, 1951, “
Calculation of a Generalized Conductivity of Heterogeneous Systems
,”
J. Tech. Phys.
0324-8313,
21
(
6
), pp.
667
677
.
47.
Lichtenecker
,
K.
, 1924, “
Der Elektrische Leitungswiderstand Künstlicher und Natürlicher Aggregate
,”
Phys. Z.
0369-982X,
25
(
10
), pp.
225
233
.
48.
Pawel
,
R. E.
,
McElroy
,
D. L.
,
Weaver
,
F. J.
, and
Graves
,
R. S.
, 1988, “
High Temperature Thermal Conductivity of a Fibrous Alumina Ceramic
,”
19th International Thermal Conductivity Conference
.
49.
Bhattacharaya
,
A.
Calmidi
,
V. V.
, and
Mahajan
,
R. L.
, 2002, “
Thermophysical properties of high porosity metal foams
,”
Int. J. Heat Mass Transfer
0017-9310,
45
, pp.
1017
1031
.
50.
Mantle
,
W. J.
, and
Chang
,
W. S.
, 1991, “
Effective Thermal Conductivity of Sintered Metal Fibers
,”
J. Thermophys. Heat Transfer
0887-8722,
5
(
4
), pp.
545
549
.
51.
Dul’nev
,
G. N.
, and
Zarichnyak
,
Y. P.
, 1970, “
A Study of the Generalized Conductivity Coefficients in Heterogeneous Systems (Review)
,”
Heat Transfer-Sov. Res.
0440-5749,
2
(
4
), pp.
89
107
.
You do not currently have access to this content.