An integral analysis of hydrodynamics and heat transfer in a thin liquid film flowing over a rotating disk surface is presented for both constant temperature and constant heat flux boundary conditions. The model is found to capture the correct trends of the liquid film thickness variation over the disk surface and compare reasonably well with experimental results over the range of Reynolds and Rossby numbers covering both inertia and rotation dominated regimes. Nusselt number variation over the disk surface shows two types of behavior. At low rotation rates, the Nusselt number exhibits a radial decay with Nusselt number magnitudes increasing with higher inlet Reynolds number for both constant wall temperature and heat flux cases. At high rotation rates, the Nusselt number profiles exhibit a peak whose location advances radially outward with increasing film Reynolds number or inertia. The results also compare favorably with the full numerical simulation results from an earlier study as well as with the reported experimental results.

1.
Webb
,
B. W.
, and
Ma
,
C. F.
, 1995, “
Single Phase Liquid Impingement Heat Transfer
,”
Adv. Heat Transfer
0065-2717,
26
, pp.
105
217
.
2.
Watson
,
E. J.
, 1964, “
The Radial Spread of a Liquid Jet Over a Horizontal Plane
,”
J. Fluid Mech.
0022-1120,
20
, pp.
481
499
.
3.
Thomas
,
S.
,
Hankey
,
W.
,
Faghri
,
A.
, and
Swanson
,
T.
, 1990, “
One-Dimensional Analysis of the Hydrodynamic and Thermal Characteristics of Thin Film Flows Including Hydraulic Jump and Rotation
,”
ASME J. Heat Transfer
0022-1481,
112
, pp.
728
735
.
4.
Rahman
,
M. M.
,
Faghri
,
A.
, and
Hankey
,
W.
, 1991, “
Computation of Turbulent Flow in a Thin Liquid Layer of Fluid Involving a Hydraulic Jump
,”
J. Fluids Eng.
0098-2202,
113
, pp.
411
418
.
5.
Avedisian
,
C. T.
, and
Zhao
,
Z.
, 2000, “
The Circular Hydraulic Jump in Low Gravity
,”
Proc. R. Soc. London, Ser. A
1364-5021,
456
, pp.
2127
2151
.
6.
Labus
,
T. L.
, and
DeWitt
,
K. J.
, 1978, “
Liquid Jet Impingement Normal to a Disk in Zero Gravity
,”
J. Fluids Eng.
0098-2202,
100
, pp.
204
209
.
7.
Miyasaka
,
Y.
, 1974, “
On the Flow of a Viscous Free Boundary Jet on a Rotating Disk
,”
Bull. JSME
0021-3764,
17
, pp.
1469
1475
.
8.
Rahman
,
M. M.
, and
Faghri
,
A.
, 1992, “
Numerical Simulation of Fluid Flow and Heat Transfer in a Thin Liquid Film Over a Rotating Disk
,”
Int. J. Heat Mass Transfer
0017-9310,
35
, pp.
1441
1453
.
9.
Buyevich
,
Y. A.
, and
Ustinov
,
V. A.
, 1994, “
Hydrodynamic Conditions of Transfer Processes Through a Radial Jet Spreading Over a Flat Surface
,”
Int. J. Heat Mass Transfer
0017-9310,
37
, pp.
165
173
.
10.
Rao
,
A.
, and
Arakeri
,
J. H.
, 1998, “
Integral Analysis Applied to Radial Film Flows
,”
Int. J. Heat Mass Transfer
0017-9310,
41
, pp.
2757
2767
.
11.
Liu
,
X.
, and
Lienhard
,
J. H.
, 1989, “
Liquid Jet Impingement Heat Transfer on a Uniform Flux Surface
,”
Heat Transfer Phenomena in Radiation, Combustion and Fires
,
ASME HTD
,
106
, pp.
523
530
.
12.
Azuma
,
T.
, and
Hoshino
,
T.
, 1984, “
The Radial Flow of a Thin Liquid Film, 1st–4th Reports
,”
Bull. JSME
0021-3764,
27
, pp.
2739
2770
.
13.
Ozar
,
B.
,
Cetegen
,
B. M.
, and
Faghri
,
A.
, 2003, “
Experiments on the Flow of a Thin Liquid Film Over a Horizontal Stationary and Rotating Disk Surface
,”
Exp. Fluids
0723-4864,
34
, pp.
556
565
.
14.
Chadhury
,
Z. H.
, 1964, “
Heat Transfer in a Radial Liquid Jet
,”
J. Fluid Mech.
0022-1120,
20
, pp.
501
511
.
15.
Wang
,
X. S.
,
Dagan
,
Z.
, and
Jiji
,
L. M.
, 1989, “
Heat Transfer Between a Circular Free Impinging Jet and a Solid Surface with Non-Uniform Wall Temperature of Wall Heat Flux: 1: Solution for the Stagnation Region
,”
Int. J. Heat Mass Transfer
0017-9310,
32
, pp.
1351
1360
.
16.
Carper
,
H. J.
, and
Defenbaugh
,
D. M.
, 1978, “
Heat Transfer from a Rotating Disk with Liquid Jet Impingement
,”
Proceedings of the 6th International Heat Transfer Conference
, Toronto, pp.
113
118
.
17.
Carper
, Jr.,
H. J.
,
Saavedra
,
J. J.
, and
Suwanprateep
,
T.
, 1986, “
Liquid Jet Impingement Cooling of a Rotating Disk
,”
ASME J. Heat Transfer
0022-1481,
108
, pp.
540
546
.
18.
Vader
,
D. T.
,
Incropera
,
F. P.
, and
Viskanta
,
R.
, 1991, “
Local Convective Heat Transfer From a Heated Surface to an Impinging, Planar Jet of Water
,”
Int. J. Heat Mass Transfer
0017-9310,
34
, pp.
611
623
.
19.
Stevens
,
J.
, and
Webb
,
B. W.
, 1991, “
Local Heat Transfer Coefficients Under and Axisymmetric, Single-Phase Liquid Jet
,”
ASME J. Heat Transfer
0022-1481,
113
, pp.
71
78
.
20.
Faghri
,
A.
,
Thomas
,
S.
, and
Rahman
,
M. M.
, 1993, “
Conjugate Heat Transfer from a Heated Disk to a Thin Liquid Film Formed by a Controlled Impinging Jet
,”
ASME J. Heat Transfer
0022-1481,
115
, pp.
116
123
.
21.
Aoune
,
A.
, and
Ramshaw
,
C.
, 1999, “
Process Intensification: Heat and Mass Transfer Characteristics of Liquid Films on Rotating Discs
,”
Int. J. Heat Mass Transfer
0017-9310,
42
, pp.
2543
2556
.
22.
Nusselt
,
W. Z.
, 1916, “
Die Oberflachenkondensation des Wasserdampfes
,”
Z. Ver Deut. Ing.
,
60
, pp.
541
546
.
23.
Ozar
,
B.
,
Cetegen
,
B. M.
, and
Faghri
,
A.
, 2004, “
Experiments on Heat Transfer in a Thin Liquid Film Flowing Over a Rotating Disk
,”
ASME J. Heat Transfer
0022-1481,
126
, pp.
184
192
.
24.
Rice
,
J.
,
Faghri
,
A.
, and
Cetegen
,
B. M.
, 2005, “
Analysis of a Free Surface Film From a Controlled Liquid Impingement Jet Over a Rotating Disk Including Conjugate Effects With and Without Evaporation
,”
Int. J. Heat Mass Transfer
0017-9310,
48
, pp.
5192
5204
.
You do not currently have access to this content.