The aim of the present investigation was to study the effect of condensate inundation on the thermal performance of a vertical array of horizontal tubes with plain and enhanced surfaces. Refrigerant R-134a was condensed at a saturation temperature of 304K on tube arrays with up to ten tubes at pitches of 25.5,28.6,and44.5mm. Notably, local condensing heat transfer coefficients were measured at the midpoint of each tube, as opposed to mean values. Four commercially available copper tubes with a nominal diameter of 19.05mm(0.75in.) were tested: a plain tube, a 26fpi1024fpm low finned tube, and two tubes, with three-dimensional (3D) enhanced surface structures. At low liquid inundation rates, the tubes with 3D enhanced surface structures significantly outperformed the low finned tube. Increasing liquid inundation deteriorated the thermal performance of the 3D enhanced tubes, whereas it had nearly no affect on the low finned tube, resulting in a higher heat transfer coefficients for the low finned tube at high liquid film Reynolds numbers. All the tests were performed with minimal vapor shear.

1.
Chang
,
Y. J.
,
Hsu
,
C. T.
, and
Wang
,
C. C.
, 1996, “
Single-Tube Performance of Condensation of R-134a on Horizontal Enhanced Tube
,”
ASHRAE Trans.
0001-2505,
102
(Pt 1), pp.
821
829
.
2.
Jung
,
D.
,
Kim
,
C.-B.
,
Cho
,
S.
, and
Song
,
K.
, 1999, “
Condensation Heat Transfer Coefficients of Enhanced Tubes With Alternative Refrigerants for CFC11 and CFC12
,”
Int. J. Refrig.
0140-7007,
22
, pp.
548
557
.
3.
Kumar
,
R.
,
Varma
,
H. K.
,
Mohanty
,
B.
, and
Agrawal
,
K. N.
, 2000, “
Condensation of R-134a Vapor Over Single Horizontal Circular Integral-Fin Tubes With Trapezoidal Fins
,”
Heat Transfer Eng.
0145-7632,
21
(
2
), pp.
29
39
.
4.
Cheng
,
W. Y.
, and
Wang
,
C. C.
, 1994, “
Condensation of R-134a on Enhanced Tubes
,”
ASHRAE Trans.
0001-2505,
100
(Pt 2), pp.
809
817
.
5.
Huber
,
J. B.
,
Rewerts
,
L. E.
, and
Pate
,
M. B.
, 1994, “
Shell-Side Condensation Heat Transfer of R-134a. Part I: Finned-Tube Performance
,”
ASHRAE Trans.
0001-2505,
100
(Pt 2), pp.
239
247
.
6.
Huber
,
J. B.
,
Rewerts
,
L. E.
, and
Pate
,
M. B.
, 1994, “
Shell-Side Condensation Heat Transfer of R-134a. Part II: Enhanced Tube Performance
,”
ASHRAE Trans.
0001-2505,
100
(Pt 2), pp.
248
256
.
7.
Huber
,
J. B.
,
Rewerts
,
L. E.
, and
Pate
,
M. B.
, 1994, “
Shell-Side Condensation Heat Transfer of R-134a. Part III: Comparison With R-12
,”
ASHRAE Trans.
0001-2505,
100
(Pt 2), pp.
257
264
.
8.
Rewerts
,
L. E.
,
Huber
,
J. B.
, and
Pate
,
M. B.
, 1996, “
The Effect of R-134a Inundation on Enhanced Tube Geometries
,”
ASHRAE Trans.
0001-2505,
102
(Pt 2), pp.
285
296
.
9.
Kulis
,
F.
,
Compingt
,
A.
,
Mercier
,
P.
, and
Rivier
,
P.
, 1995, “
Design Method for Shell and Tube Condensers in Refrigeration Units
,”
Heat Transfer in Condensation
,
Eurotherm Seminar 47
, Paris, pp.
133
138
.
10.
Honda
,
H.
,
Takamatsu
,
H.
,
Takada
,
N.
, and
Yamasaki
,
T.
, 1995, “
Design Method for Shell and Tube Condensers in Refrigeration Units
,”
Heat Transfer in Condensation
,
Eurotherm Seminar 47
, Paris, pp.
110
115
.
11.
Honda
,
H.
,
Takata
,
N.
,
Takamatsu
,
H.
,
Kim
,
J. S.
, and
Usami
,
K.
, 2002, “
Condensation of Downward-Flowing HFC-134a in a Staggered Bundle of Horizontal Finned Tubes: Effect of Fin Geometry
,”
Int. J. Refrig.
0140-7007,
25
, pp.
3
10
.
12.
Belghazi
,
M.
,
Bontemps
,
A.
,
Signe
,
J. C.
, and
Marvillet
,
C.
, 2001, “
Condensation Heat Transfer of a Pure Fluid and Binary Mixture Outside a Bundle of Smooth Horizontal Tubes: Comparison of Experimental Results and a Classical Model
,”
Int. J. Refrig.
0140-7007,
24
, pp.
841
855
.
13.
Belghazi
,
M.
,
Bontemps
,
A.
, and
Marvillet
,
C.
, 2002, “
Condensation Heat Transfer on Enhanced Surface Tubes: Experimental Results and Predictive Theory
,”
ASME J. Heat Transfer
0022-1481,
124
, pp.
754
761
.
14.
Gstoehl
,
D.
, and
Thome
,
J. R.
, 2006, “
Film Condensation of R-134a on Tube Arrays With Plain and Enhanced Surfaces. Part II: Empirical Prediction of Inundation Effects
,”
ASME J. Heat Transfer
0022-1481,
128
(
1
), pp.
33
43
.
15.
Gstoehl
,
D.
, and
Thome
,
J. R.
, 2006, “
Visualization of R-134a Flowing on Tube Arrays With Plain and Enhanced Surfaces Under Adiabatic and Condensing Conditions
,”
Heat Transfer Eng.
0145-7632,
27
, in press.
16.
Roques
,
J.-F.
, 2004, “
Falling Film Evaporation on a Single Tube and on a Tube Bundle
,” Ph.D. thesis No. 2987, Swiss Federal Institute of Technology, Lausanne, http://library.epfl.ch/theses/?display=detail&nr=2987http://library.epfl.ch/theses/?display=detail&nr=2987
17.
Gstöhl
,
D.
, 2004, “
Heat Transfer and Flow Visualization of Falling Film Condensation on Tube Arrays With Plain and Enhanced Surfaces
,” Ph.D. thesis No. 3015, Swiss Federal Institute of Technology, Lausanne, http://library.epfl.ch/theses/?display=detail&nr=3015http://library.epfl.ch/theses/?display=detail&nr=3015
18.
Briggs
,
D. E.
, and
Young
,
E. H.
, 1969, “
Modified Wilson Plot Techniques for Obtaining Heat Transfer Correlations for Shell and Tube Heat Exchangers
,”
Chem. Eng. Prog.
0360-7275,
65
(
92
), pp.
35
45
.
19.
Incropera
,
F. P.
, and
DeWitt
,
D. P.
, 1996,
Fundamentals of Heat and Mass Transfer
, 4th Edition,
Wiley
, New York, Chap. 8.
20.
Gnielinski
,
V.
, 1976, “
New Equations for Heat and Mass Transfer in Turbulent Pipe and Channel Flow
,”
Int. Chem. Eng.
0020-6318,
16
(
2
), pp.
359
368
.
21.
Rose
,
J. W.
, 2004, personal communication.
22.
Rohsenow
,
W. M.
, 1956, “
Heat Transfer and Temperature Distribution in Laminar Film Condensation
,”
Trans. ASME
0097-6822,
79
, pp.
1645
1648
.
23.
McAdams
,
W. H.
, 1954,
Heat Transmission
, 3rd Edition,
McGraw-Hill
, New York.
24.
Sreepathi
,
L. K.
,
Bapat
,
S. L.
, and
Sukhatme
,
S. P.
, 1996, “
Heat Transfer During Film Condensation of R-123 Vapour on Horizontal Integral-Fin Tubes
,”
J. Enhanced Heat Transfer
1065-5131,
3
(
2
), pp.
147
164
.
25.
Beatty
,
K. O.
, and
Katz
,
D. L.
, 1948, “
Condensation of Vapors on Outside of Finned Tubes
,”
Chem. Eng. Prog.
0360-7275,
44
(
1
), pp.
55
70
.
26.
Webb
,
R. L.
,
Rudy
,
T. M.
, and
Kedzierski
,
M. A.
, 1985, “
Prediction of the Condensation Coefficient on Horizontal Integral-Fin Tubes
,”
ASME J. Heat Transfer
0022-1481,
107
, pp.
369
376
.
27.
Rudy
,
T. M.
, and
Webb
,
R. L.
, 1983, “
Theoretical Model for Condensation on Horizontal Integral-Fin Tubes
,”
AIChE Symp. Ser.
0065-8812,
79
(
225
), pp.
11
18
.
28.
Thome
,
J. R.
, 2004,
Condensation on External Surfaces
, Engineering Databook III, Wolverine Tube, Huntsville, AL, Chap. 7, http://www.wlv.com/productshttp://www.wlv.com/products.
29.
Rose
,
J. W.
, 1994, “
An Approximate Equation for the Vapour-Side Heat Transfer Coefficient for Condensation on Low-Finned Tubes
,”
Int. J. Heat Mass Transfer
0017-9310,
37
(
5
), pp.
865
875
.
30.
Briggs
,
A.
, and
Rose
,
J. W.
, 1994, “
Effect of Fin Efficiency on a Model for Condensation Heat Transfer on a Horizontal, Integral-Fin Tube
,”
Int. J. Heat Mass Transfer
0017-9310,
37
(Suppl. 1), pp.
457
463
.
31.
Kumar
,
R.
,
Varma
,
H. K.
,
Mohanty
,
B.
, and
Agrawal
,
K. N.
, 2002, “
Prediction of Heat Transfer Coefficient During Condensation of Water and R-134a on Single Horizontal Integral-Fin Tubes
,”
Int. J. Refrig.
0140-7007,
25
, pp.
111
126
.
You do not currently have access to this content.