A mechanistic fog inerting model has been developed to account for the effects of fog on the upward lean flammability limits of a combustible mixture based on the thermal theory of flame propagation. Benchmarking of this model with test data shows reasonably good agreement between the theory and the experiment. Applications of the model and available fog data to determine the upward lean flammability limits of the H2–air–steam mixture in the ice condenser upper plenum region of a pressurized water reactor (PWR) ice condenser containment during postulated large loss of coolant accident (LOCA) conditions indicate that combustion may be suppressed beyond the downward flammability limit (8 percent H2 by volume).

1.
Baer
M. R.
,
Griffiths
S. K.
, and
Shepherd
J. E.
,
1984
, “
Hydrogen Combustion in Aqueous Foams
,”
Nuclear Sci. & Eng.
, Vol.
88
, pp.
436
444
.
2.
Davies
R. M.
, and
Taylor
G. I.
,
1950
, “
The Mechanics of Large Bubbles Rising Through Extended Liquids and Through Liquids in Tubes
,”
Proc. Roy. Soc. London
, Vol.
200A
, p.
385
385
.
3.
Dryer, F. L., 1991, “The Phenomenology of Modeling Combustion Chemistry,” in: Fossil Fuel Combustion, W. Bartok and A. F. Sarofim, eds., Wiley, pp. 126, 166–167.
4.
Epstein
M.
, and
Hauser
G. M.
,
1991
, “
Simultaneous Formation and Thermophoretic Droplet Deposition in a Turbulent Pipe Flow
,”
ASME JOURNAL OF HEAT TRANSFER
, Vol.
113
, pp.
224
231
.
5.
Fauske and Associates, 1990, “MAAP 3.0B Complete Code Manual,” EPRINP-777-1 CCML, Electric Power Research Institute.
6.
Glassman, I., 1987, Combustion, Academic Press, New York, pp. 117–118.
7.
He
L.
, and
Clavin
P.
,
1993
, “
Premixed Hydrogen-Oxygen Flames. Part I: Flame Structure Near the Flammability Limits
,”
Combustion and Flame
, Vol.
93
, pp.
391
407
.
8.
Hertzberg, M., 1976, “The Theory of Flammability Limits: Natural Convection,” Bureau of Mines Report of Investigation, RI-8127.
9.
Hertzberg, M., 1981, “Flammability Limits and Pressure Development in Hydrogen-Air Mixtures,” Proc. Workshop on the Impact of Hydrogen on Water Reactor Safety, Albuquerque, NM, Vol. III of IV, NUREG/CR-2017, SAND 81-0661, pp. 17–65.
10.
Hubbard
G. L.
,
Denny
V. E.
, and
Mills
A. F.
,
1975
, “
Droplet Evaporation: Effects of Transients and Variable Properties
,”
Int. J. Heat Mass Transfer
, Vol.
18
, pp.
1003
1008
.
11.
Iijima
T.
, and
Takeno
T.
,
1986
, “
Effects of Temperature and Pressure on Burning Velocity
,”
Combustion and Flame
, Vol.
65
, pp.
35
43
.
12.
Lefebvre, A. H., 1991, “Fuel Atomization, Droplet Evaporation, and Spray Combustion,” in: Fossil Fuel Combustion, W. Bartok and A. F. Sarofim, eds., Wiley, New York, pp. 601–602.
13.
Levy
A.
,
1950
,
Proc. Roy. Soc. London
, Vol.
283A
, p.
134
134
.
14.
Ligotke, M. W., Eschbach, E. J., and Winegardner, W. K., 1991, “Ice Condenser Aerosol Tests,” NUREG/CR-5768.
15.
Liu
D.
, and
MacFarlane
R.
,
1983
, “
Laminar Burning Velocities of Hydrogen-Air and Hydrogen-Air-Steam Flames
,”
Combustion and Flame
, Vol.
49
, pp.
59
71
.
16.
Lovachev
L. A.
,
1973
, “
Flammability Limits: An Invited Review
,”
Combustion, & Flame
, Vol.
20
, pp.
259
289
.
17.
Lovachev
L. A.
,
1979
, “
Flammability Limits—A Review
,”
Comb. Science, & Tech.
, Vol.
20
, pp.
209
224
.
18.
Marshall, B. W., 1986, “Hydrogen: Air: Steam Flammability Limits and Combustion Characteristics in the FITS Vessel,” NUREG/CR-3468, SAND84-0383, Sandia National Laboratories.
19.
Mitani, T., and Williams, F. A., 1979, “Studies of Premixed Hydrogen Flames,” Ph.D. Dissertation, U. of Calif. at San Diego; also, Combustion and Flame, Vol. 39, 1980, pp. 169–190.
20.
Rosner, D. E., 1986, Transport Processes in Chemically Reacting Flow Systems, Butterworth-Heineman, p. 332.
21.
Sherman, M. P., Baer, M. R., and Griffiths, S. K., 1981, “Deliberate Ignition and Water Fogs as H2 Control Measures for Sequoyah,” Workshop on the Impact of Hydrogen on Water Reactor Safety, Albuquerque, NM.
22.
Sparrow
E. M.
, and
Gregg
J. L.
,
1958
, “
The Variable Property Problem in Free Convection
,”
Trans. ASME
, Vol.
80
, pp.
879
886
.
23.
Strehlow, R. A., 1991, “Premixed Flames and Detonations: Combustion Safety and Explosions,” in: Fossil Fuel Combustion, W. Bartok and A. F. Sarofim, eds., Wiley, New York, pp. 346.
24.
Strum
M. L.
, and
Toor
H. L.
,
1992
, “
Microphysical Measurements of Fog Formed in a Turbulent Jet
,”
Aerosol Sci. and Technology
, Vol.
16
, pp.
151
165
.
25.
Tsai, S. S., and Liparulo, N. J., 1982, “Fog Inerting Criteria for Hydrogen/Air Mixtures,” 2nd Int. Workshop on the Impact of Hydrogen on Water Reactor Safety, Albuquerque, NM.
26.
Ural, E. A., and Zalosh, R. G., 1988, “HICCUP: A Computer Code for Hydrogen Injection, Combustion, and Cooldown Using Phenomenological Models,” EPRI NP-5721-CCM, Mar.
27.
Williams, F. A., 1985, Combustion Theory, Benjamin/Cummings, pp. 271–276.
28.
Zalosh, R. G., and Bajpai, S. N., 1982, “The Effect of Water Fogs on the Deliberate Ignition of Hydrogen,” EPRI NP-2637.
This content is only available via PDF.
You do not currently have access to this content.