A computational evaluation of an approximate theory for the optical properties of soot is described, emphasizing the small-angle (Guinier) regime. The approximate theory (denoted RDG-FA theory) is based on the Rayleigh–Debye–Gans scattering approximation while treating soot as mass-fractal aggregates of spherical primary particles that have constant diameters and refractive indices. The approximate theory was evaluated by more exact predictions from the solution of the volume integral equation formulation of the governing equations, using the method of moments, and based on the ICP algorithm of Iskander et al. (1989). Numerical simulations were used to construct statistically significant populations of soot aggregates having appropriate fractal properties and prescribed numbers of primary particles per aggregate. Optical properties considered included absorption, differential scattering, and total scattering cross sections for conditions typical of soot within flame environments at wavelengths in the visible and the infrared. Specific ranges of aggregate properties were as follows: primary particle optical size parameters up to 0.4, numbers of primary particles per aggregate up to 512, mean fractal dimensions of 1.75, mean fractal prefactors of 8.0, and refractive indices typical of soot. Over the range of the evaluation, ICP and RDG-FA predictions generally agreed within numerical uncertainties (ca. 10 percent) within the Guinier regime, complementing similar performance of RDG-FA theory in the power-law regime based on recent experiments. Thus, the use of approximate RDG-FA theory to estimate the optical properties of soot appears to be acceptable—particularly in view of the significant uncertainties about soot optical properties due to current uncertainties about soot refractive indices.

1.
Berry
M. V.
, and
Percival
I. C.
,
1986
, “
Optics of Fractal Clusters Such as Smoke
,”
Optica Acta
, Vol.
33
, pp.
577
591
.
2.
Bohren, C. F., and Huffman, D. R., 1983, Absorption and Scattering of Light by Small Particles, Wiley, New York, pp. 477–482.
3.
Borghese
F.
,
Denti
P.
,
Saija
R.
,
Toscano
G.
, and
Sindoni
O. I.
,
1984
, “
Multiple Electromagnetic Scattering From a Cluster of Spheres. I. Theory
,”
Aerosol Sci. Tech.
, Vol.
3
, pp.
227
235
.
4.
Charalampopoulos
T. T.
,
1992
, “
Morphology and Dynamics of Agglomerated Particulates in Combustion Systems Using Light Scattering Techniques
,”
Prog. Energy Combust. Sci.
, Vol.
18
, pp.
13
45
.
5.
Chen
H. Y.
,
Iskander
M. F.
, and
Penner
J. E.
,
1990
, “
Light Scattering and Absorption by Fractal Agglomerates and Coagulations of Smoke Aerosols
,”
J. Modern Optics
, Vol.
37
, pp.
171
181
.
6.
Dalzell
W. H.
,
Williams
G. C.
, and
Hottel
H. C.
,
1970
, “
A Light Scattering Method for Soot Concentration Measurements
,”
Combust. Flame
, Vol.
14
, pp.
161
170
.
7.
Dobbins, R. A., Santoro, R. J., and Semerjian, H. G., 1990, “Analysis of Light Scattering From Soot Using Optical Cross Sections for Aggregates,” Twenty-Third Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, PA, pp. 1525–1532.
8.
Dobbins
R. A.
, and
Megaridis
C. M.
,
1991
, “
Absorption and Scattering of Light by Polydisperse Aggregates
,”
Appl. Optics
, Vol.
30
, pp.
4747
4754
.
9.
Freltoft
T.
,
Kjems
J. K.
, and
Sinha
S. K.
,
1986
, “
Power-Law Correlations and Finite Size Effects in Silica Particle Aggregates Studied by Small-Angle Neutron Scattering
,”
Physical Review B
, Vol.
33
, pp.
269
275
.
10.
Iskander
M. F.
,
Chen
H. Y.
, and
Penner
J. E.
,
1989
, “
Optical Scattering and Absorption by Branched Chains of Aerosols
,”
Appl. Optics
, Vol.
28
, pp.
3083
3091
.
11.
Jones
A. R.
,
1979
a, “
Electromagnetic Wave Scattering by Assemblies of Particles in the Rayleigh Approximation
,”
Proc. Roy. Soc. London
, Vol.
A366
, pp.
111
127
.
12.
Jones
A. R.
,
1979
b, “
Scattering Efficiency Factors for Agglomerates of Small Spheres
,”
J. Phys. D: Appl. Phys.
, Vol.
12
, pp.
1661
1672
.
13.
Jullien, R., and Botet, R., 1987, Aggregation and Fractal Aggregates, World Scientific Publishing Co., Singapore, pp. 46–60.
14.
Kerker, M., 1969, The Scattering of Light, Academic Press, New York, pp. 414–486.
15.
Ko¨ylu¨
U¨. O¨.
, and
Faeth
G. M.
,
1992
, “
Structure of Overfire Soot in Buoyant Turbulent Diffusion Flames at Long Residence Times
,”
Combust. Flame
, Vol.
89
, pp.
140
156
.
16.
Ko¨ylu¨
U¨. O¨.
, and
Faeth
G. M.
,
1993
, “
Radiation Properties of Flame-Generated Soot
,”
ASME JOURNAL OF HEAT TRANSFER
, Vol.
115
, pp.
409
417
.
17.
Ko¨ylu¨
U¨. O¨.
, and
Faeth
G. M.
,
1994
a, “
Optical Properties of Overfire Soot in Buoyant Turbulent Diffusion Flames at Long Residence Times
,”
ASME JOURNAL OF HEAT TRANSFER
, Vol.
116
, pp.
152
159
.
18.
Ko¨ylu¨
U¨. O¨.
, and
Faeth
G. M.
,
1994
b, “
Optical Properties of Soot in Buoyant Laminar Diffusion Flames
,”
ASME JOURNAL OF HEAT TRANSFER
, Vol.
116
, pp.
971
979
.
19.
Ku
J. C.
,
1991
, “
Correction for the Extinction Efficiency Factors Given in the Jones Solution for Electromagnetic Scattering by Agglomerates of Small Spheres
,”
J. Phys. D: Appl. Phys.
, Vol.
24
, pp.
71
75
.
20.
Ku
J. C.
, and
Shim
K.-H.
,
1992
a, “
Optical Diagnostics and Radiative Properties of Simulated Soot Agglomerates
,”
ASME JOURNAL OF HEAT TRANSFER
, Vol.
113
, pp.
953
958
.
21.
Ku
J. C.
, and
Shim
K.-H.
,
1992
b, “
A Comparison of Solutions for Light Scattering and Absorption by Agglomerated or Arbitrarily-Shaped Particles
,”
J. Quant. Spect. and Rad. Trans.
, Vol.
47
, pp.
201
220
.
22.
Kumar
S.
, and
Tien
C. L.
,
1989
, “
Effective Diameter of Agglomerates for Radiative Extinction and Scattering
,”
Combust. Sci. Tech.
, Vol.
66
, pp.
199
216
.
23.
Lin
M. Y.
,
Lindsay
H. M.
,
Weitz
D. A.
,
Ball
R. C.
,
Klein
R.
, and
Meakin
P.
,
1989
, “
Universality of Fractal Aggregates as Probed by Light Scattering
,”
Proc. Roy. Soc. London
, Vol.
A423
, pp.
71
87
.
24.
Martin
J. E.
, and
Hurd
A. J.
,
1987
, “
Scattering From Fractals
,”
J. Appl. Cryst.
, Vol.
20
, pp.
61
78
.
25.
Mountain
R. D.
, and
Mulholland
G. W.
,
1988
, “
Light Scattering From Simulated Smoke Agglomerates
,”
Langmuir
, Vol.
4
, pp.
1321
1326
.
26.
Nelson
J.
,
1989
, “
Test of a Mean Field Theory for the Optics of Fractal Clusters
,”
J. Modern Optics
, Vol.
36
, pp.
1031
1057
.
27.
Purcell
E. M.
, and
Pennypacker
C. R.
,
1973
, “
Scattering and Absorption of Light by Nonspherical Dielectric Grains
,”
Astrophys. J.
, Vol.
186
, pp.
705
714
.
28.
Puri
R.
,
Richardson
T. F.
,
Santoro
R. J.
, and
Dobbins
R. A.
,
1993
, “
Aerosol Dynamic Processes of Soot Aggregates in a Laminar Ethene Diffusion Flame
,”
Combust. Flame
, Vol.
92
, pp.
320
333
.
29.
Rudder
R. R.
, and
Bach
D. R.
,
1968
, “
Rayleigh Scattering of Ruby-Laser Light by Neutral Gases
,”
J. Opt. Soc. Amer.
, Vol.
58
, pp.
1260
1266
.
30.
Sorensen
C. M.
,
Cai
J.
, and
Lee
N.
,
1992
, “
Test of Static Structure Factors for Describing Light Scattering From Fractal Soot Aggregates
,”
Langmuir
, Vol.
8
, pp.
2064
2069
.
31.
van de Hulst, H. C., 1957, Light Scattering by Small Particles, Dover Publications, New York.
This content is only available via PDF.
You do not currently have access to this content.