Abstract

Nickel-based alloys such as Inconel 718 belong to the group of heat-resistant super alloys. Combined with good mechanical properties over a wide range of temperatures, nickel alloys are used extensively in the aero engine sections exposed to elevated temperatures. Besides turbine blades and disks, integrally designed compressor rotors (Blisks) in the high-pressure compressor are increasingly made of Ni alloys. This is the result of an efficiency-driven increase in temperature levels in the rear compressor stages. The machining of these hard-to-machine materials is characterized by low productivity and high tool wear. Compared to the machining with conventional cemented carbide end mills, innovative SiAlON ceramics offer a significant potential to increase the performance of these machining processes while saving cooling-lubricants. Besides an increase in productivity, the evaluation of the overall environmental impact of specific manufacturing processes is gaining importance in the context of more sustainable product life cycles. This paper focuses on the comparison of different milling strategies in the production of high-pressure compressor rotors made from Inconel 718 in a cradle-to-gate assessment based on DIN EN ISO 14040/44. Thus, the ecological impact of both the state-of-the-art and the novel SiAlON roughing strategy are evaluated considering the consumption of energy, water and compressed air as well as the tool wear. The life cycle impact analysis (LCIA) will be performed as a midpoint analysis taking multiple indicators into account such as the global warming potential (GWP).

References

1.
Pearce
,
B.
,
2020
, “
2020 COVID-19: Outlook for Air Travel in the Next 5 Years
,” IATA, Geneva, Switzerland.
2.
CleanSky2,
2015
, Joint Technical Programme: The European Aeronautical Industry's Proposal for the Continuation and Extension of the Clean Sky Joint Technology Initiative With a New Clean Sky 2 Programme Under the European Union's Horizon 2020 Framework Programme for Research and Innovation,
Clean Sk2,
Brussels, Belgium.
3.
Bräunling
,
W. J. G.
,
Flugzeugtriebwerke: Grundlagen, Aero-Thermodynamik, ideale und reale Kreisprozesse, Thermische Turbomaschinen, Komponenten, Emissionen und Systeme
,
Springer Vieweg
,
Berlin
.
4.
Klocke
,
F.
,
Zeis
,
M.
,
Klink
,
A.
, and
Veselovac
,
D.
,
2012
, “
Technological and Economical Comparison of Roughing Strategies via Milling, EDM and ECM for Titanium- and Nickel-Based Blisks
,”
Procedia CIRP
,
2
, pp.
98
101
.10.1016/j.procir.2012.05.048
5.
Fricke
,
K.
,
Gierlings
,
S.
,
Ganser
,
P.
,
Seimann
,
M.
, and
Bergs
,
T.
,
2021
, “
A Cradle to Gate Approach for Life-Cycle-Assessment of Blisk Manufacturing
,”
ASME
Paper No. GT2021-59479.10.1115/GT2021-59479
6.
Klocke
,
F.
,
2018
,
Fertigungsverfahren 1: Zerspanung Mit Geometrisch Bestimmter Schneide
,
Springer Vieweg
,
Berlin
.
7.
Zimmermann
,
R.
,
Welling
,
D.
,
Venek
,
T.
,
Ganser
,
P.
, and
Bergs
,
T.
,
2021
, “
Tool Wear Progression of SiAlON Ceramic End Mills in Five-Axis High-Feed Rough Machining of an Inconel 718 BLISK
,”
Procedia CIRP
,
101
(
1
), pp.
13
16
.10.1016/j.procir.2021.02.003
8.
Tian
,
X.
,
Zhao
,
J.
,
Dong
,
Y.
,
Zhu
,
N.
,
Zhao
,
J.
, and
Li
,
A.
,
2014
, “
A Comparison Between Whisker-Reinforced Alumina and SiAlON Ceramic Tools in High-Speed Face Milling of Inconel 718
,”
Proc. Inst. Mech. Eng., Part B
,
228
(
8
), pp.
845
857
.10.1177/0954405413512814
9.
Manuel
,
W.
, and
Eckart
,
U.
, “
Keramische Schaftfräswerkzeuge Für Die Hochgeschwindigkeitsbearbeitung Von Nickelbasis-Legierungen
,”
dissertation
,
Fraunhofer-Institut Für Produktionsanlagen und Konstruktionstechnik
, Berlin, Germany.https://www.bookshop.fraunhofer.de/buch/keramische-schaftfraeswerkzeuge-fuer-diehochgeschwindigkeitsbearbeitung-von-nickelbasis-legierungen/244750
10.
Wiemann
,
E.
,
2006
,
Hochleistungsfräsen Von Superlegierungen
,
Fraunhofer IRB-Verlag
,
Stuttgart, Germany
.
11.
International Organization for Standardization,
2020
, “Environmental Management—Life Cycle Assessment—Principles and Framework,” ISO, AFNOR, France, Standard No. ISO 14040:2006.
12.
Hauschild
,
M. Z.
,
Rosenbaum
,
R. K.
, and
Olsen
,
S. I.
, eds.,
2018
,
Life Cycle Assessment: Theory and Practice
,
Springer
,
Cham, Switzerland
.
13.
Lüdemann
,
L.
,
2014
, “
Vergleich von Softwarelösungen für die Ökobilanzierung—Eine Softwareergonomische Analyse
,” TU Chemnitz, Chemnitz, Germany.
14.
Fricke
,
K.
,
Gierlings
,
S.
,
Ganser
,
P.
,
Venek
,
T.
, and
Bergs
,
T.
,
2021
, “
Geometry Model and Approach for Future Blisk LCA
,”
IOP Conf. Ser.: Mater. Sci. Eng.
,
1024
(
1
), p.
012067
.10.1088/1757-899X/1024/1/012067
15.
Weidema
,
B.
,
Bauer
,
C.
, and
Hischier
,
R.
,
2013
, “
Data Quality Guideline for the Ecoinvent Database Version 3: Overview and Methodology Ecoinvent
,” Swiss Center for Life Cycle Inventories, Aalborg University, Aalborg Øst, Denmark.
16.
Bergs
,
T.
,
2021
, “
Internet of Production—Turning Data Into Value
,”
Proceedings of AWK
, Aachen, Germany, Sept. 22–23, pp.
97
103
.https://www.awk-aachen.com/wpcontent/uploads/2020/09/AWK_2021_Flyer_EN.pdf
17.
Dröder
,
K.
,
Karpuschewski
,
B.
,
Uhlmann
,
E.
,
Arrabiyeh
,
P. A.
,
Berger
,
D.
,
Busemann
,
S.
,
Hartig
,
J.
,
Madanchi
,
N.
,
Mahlfeld
,
G.
, and
Sommerfeld
,
C.
,
2020
, “
A Comparative Analysis of Ceramic and Cemented Carbide End Mills
,”
Prod. Eng.
,
14
(
3
), pp.
355
364
.10.1007/s11740-020-00966-9
18.
Universität Leiden
,
2016
, “
Institute of Environmental Sciences (CML): CML-IA Characterisation Factors
,” Universität Leiden, Leiden, The Netherlands, accessed Sept. 5, 2016, https://www.universiteitleiden.nl/en/research/research-output/science/cml-ia-characterisation-factors
You do not currently have access to this content.