Abstract

During fast gas-turbine engine acceleration and deceleration, the transient vibration effects in bladed disk vibration become significant and the transient response needs to be calculated. In this paper, an effective method is developed for efficient calculations of the transient vibration response for mistuned bladed disks under varying rotation speeds. The method uses the large-scale finite element modeling of the bladed disks allowing the accurate description of the dynamic properties of the mistuned bladed disks. The effects of the varying rotation speed on the natural frequencies and mode shapes of a mistuned bladed disk and its effects on the amplitude and the spectral composition of the loading are considered. The dependency of the modal characteristics on the rotation speed is based on the evaluation of these characteristics at reference points followed by the interpolation to obtain values at any rotation speed from the operating range. A new method has been developed for the interpolation of mode shapes while preserving the orthogonality and mass normalization of the mode shapes. The method of mode shape interpolation is elaborated for tuned and mistuned bladed disks. The accuracy and efficiency of the method are demonstrated on test examples and on analysis of transient forced response of realistic bladed disks.

References

1.
Cowles
,
B.
,
1996
, “
High Cycle Fatigue in Aircraft Gas Turbines—An Industry Perspective
,”
Int. J. Fract.
,
80
(
2–3
), pp.
147
163
.10.1007/BF00012667
2.
Srinivasan
,
A.
,
1997
, “
Flutter and Resonant Vibration Characteristics of Engine Blades
,”
ASME. J. Eng. Gas Turbines Power
,
119
(
4
), pp.
742
775
.10.1115/1.2817053
3.
Berzeri
,
M.
, and
Shabana
,
A.
,
2002
, “
Study of the Centrifugal Stiffening Effect Using the Finite Element Absolute Nodal Coordinate Formulation
,”
J. Multibody Syst. Dyn.
,
7
(
4
), pp.
357
387
.10.1023/A:1015567829908
4.
Genta
,
G.
, and
Silvagni
,
M.
,
2012
, “
On Centrifugal Softening in Finite Element Method Rotor Dynamics
,”
ASME J. Appl. Mech.
,
81
(
1
), p.
011001
.10.1115/1.4024073
5.
Nikolic
,
M.
,
Petrov
,
E. P.
, and
Ewins
,
D. J.
,
2007
, “
Coriolis Forces in Forced Response Analysis of Mistuned Bladed Disks
,”
ASME J. Turbomach.
,
129
(
4
), pp.
730
739
.10.1115/1.2720866
6.
Jing
,
T.
,
Zang
,
C.
, and
Petrov
,
E.
,
2020
, “
High Fidelity Transient Forced Response Analysis of Mistuned Bladed Disks Under Complex Excitation and Variable Rotation Speeds
,”
ASME
Paper No. GT2020-15223.10.1115/GT2020-15223
7.
Lieu
,
T.
, and
Lesoinne
,
M.
,
2004
, “
Parameter Adaptation of Reduced Order Models for Three-Dimensional Flutter Analysis
,”
AIAA
Paper No. 2004-888.10.2514/6.2004-888
8.
Lieu
,
T.
, and
Farhat
,
C.
,
2007
, “
Adaptation of Aeroelastic Reduced-Order Models and Application to an F-16 Configuration
,”
AIAA J.
,
45
(
6
), pp.
1244
1257
.10.2514/1.24512
9.
Amsallem
,
D.
, and
Farhat
,
C.
,
2008
, “
Interpolation Method for Adapting Reduced-Order Models and Application to Aeroelasticity
,”
AIAA J.
,
46
(
7
), pp.
1803
1813
.10.2514/1.35374
10.
Mailach
,
R.
, and
Vogeler
,
K.
,
2004
, “
Rotor-Stator Interactions in a Four-Stage Low-Speed Axial Compressor—Part I: Unsteady Profile Pressures and the Effect of Clocking
,”
ASME J. Turbomach.
,
126
(
4
), pp.
507
518
.10.1115/1.1791641
11.
Mailach
,
R.
,
Lehmann
,
I.
, and
Vogeler
,
K.
,
2008
, “
Periodical Unsteady Flow Within a Rotor Blade Row of an Axial Compressor—Part II Wake-Tip Clearance Vortex Interaction
,”
ASME J. Turbomach.
,
130
(
4
), p.
041005
.10.1115/1.2812330
12.
Ernst
,
M.
,
Michel
,
A.
, and
Jeschke
,
P.
,
2011
, “
Analysis of Rotor-Stator-Interaction and Blade-to-Blade Measurements in a Two Stage Axial Flow Compressor
,”
ASME J. Turbomach.
,
133
(
1
), p.
011027
.10.1115/1.4001168
13.
Gross
,
J.
,
Krack
,
M.
, and
Schoenenborn
,
H.
,
2017
, “
Analysis of the Effect of Multi-Row and Multi-Passage Aerodynamic Interaction on the Forced Response Variation in a Compressor Configuration: Part 2—Effects of Additional Structural Mistuning
,”
ASME
Paper No. GT2017-63019.10.1115/GT2017-63019
14.
Bréard
,
C.
,
Green
,
J. S.
, and
Imregun
,
M.
,
2003
, “
Low-Engine-Order Excitation Mechanisms in Axial-Flow Turbomachinery
,”
J. Propul. Power
,
19
(
4
), pp.
704
712
.10.2514/2.6160
15.
Jöcker
,
M.
,
Kessar
,
A.
,
Fransson
,
T. H.
,
Kahl
,
G.
, and
Rehder
,
H. J.
,
2006
, “
Comparison of Models to Predict Low Engine Order Excitation in a High Pressure Turbine Stage
,”
Unsteady Aerodynamics, Aeroacoustics and Aeroelasticity of Turbomachines
,
Springer
, Berlin, pp.
145
159
.
16.
Zhou
,
B.
,
Mujezinovic
,
A.
,
Coleman
,
A.
,
Ning
,
W.
, and
Ansari
,
A.
,
2011
, “
Forced Response Prediction for Steam Turbine Last Stage Blade Subject to Low Engine Order Excitation
,”
ASME
Paper No. GT2011-46856.10.1115/GT2011-46856
17.
Stummann
,
S.
,
Jeschke
,
P.
, and
Metzler
,
T.
,
2015
, “
Circumferentially Non-Uniform Flow in the Rear Stage of a Multistage Compressor
,”
ASME
Paper No. GT2015-42935.10.1115/GT2015-42935
18.
Lewis
,
F. M.
,
1932
, “
Vibration During Acceleration Through a Critical Speed
,”
ASME J. Appl. Mech.
,
54
, pp.
253
261
.
19.
Markert
,
R.
, and
Seidler
,
M.
,
2001
, “
Analytically Based Estimation of the Maximum Amplitude During Passage Through Resonance
,”
Int. J. Solids Struct.
,
38
(
10–13
), pp.
1975
1992
.10.1016/S0020-7683(00)00147-5
20.
Ayers
,
J.
,
Feiner
,
D.
, and
Griffin
,
J.
,
2006
, “
A Reduced-Order Model for Transient Analysis of Bladed Disk Forced Response
,”
ASME J. Turbomach.
,
128
(
3
), pp.
466
473
.10.1115/1.2185675
21.
Kaneko
,
Y.
,
2013
, “
Study on Transient Vibration of Mistuned Bladed Disk Passing Through Resonance
,”
ASME
Paper No. GT2013-94052.10.1115/GT2013-94052
22.
Hartung
,
A.
,
2010
, “
A Numerical Approach for the Resonance Passage Computation
,”
ASME
Paper No. GT2010-22015.10.1115/GT2010-22015
23.
Hackenberg
,
H.-P.
, and
Hartung
,
A.
,
2016
, “
An Approach for Estimating the Effect of Transient Sweep Through a Resonance
,”
ASME J. Eng. Gas Turbines Power
,
138
(
8
), p.
082502
.10.1115/1.4032664
24.
Bonhage
,
M.
,
Pohle
,
L.
,
Panning-von Scheidt
,
L.
, and
Wallaschek
,
J.
,
2015
, “
Transient Amplitude Amplification of Mistuned Blisks
,”
ASME J. Eng. Gas Turbines Power
,
137
(
11
), p.
112502
.10.1115/1.4030278
25.
Bonhage
,
M.
,
Adler
,
J. T.
,
Kolhoff
,
C.
,
Hentschel
,
O.
,
Schlesier
,
K.-D.
,
Panning-von Scheidt
,
L.
, and
Wallaschek
,
J.
,
2018
, “
Transient Amplitude Amplification of Mistuned Structures: An Experimental Validation
,”
J. Sound Vib.
,
436
, pp.
236
252
.10.1016/j.jsv.2018.07.031
26.
Siewert
,
C.
, and
Stüer
,
H.
,
2017
, “
Transient Forced Response Analysis of Mistuned Steam Turbine Blades During Startup and Coastdown
,”
ASME J. Eng. Gas Turbines Power
,
139
(
1
), p.
012501
.10.1115/1.4034151
27.
Duan
,
Y.
,
Zang
,
C.
, and
Petrov
,
E.
,
2016
, “
Forced Response Analysis of High-Mode Vibrations for Mistuned Bladed Disks With Effective Reduced-Order Models
,”
ASME J. Eng. Gas Turbines Power
,
138
(
11
), p.
112502
.10.1115/1.4033513
You do not currently have access to this content.