Abstract

A wave rotor is a shock-driven pressure exchange device that, while relatively rarely studied or indeed, employed, offers significant potential efficiency gains in a variety of applications including refrigeration and gas turbine topping cycles. This paper introduces a quasi-one-dimensional (Q1D) wave action model implemented in matlab for the computation of the unsteady flow field and performance characteristics of wave rotors of straight or cambered channel profiles. The purpose here is to introduce and validate a rapid but reliable method of modeling the performance of a power-generating wave rotor where little such insight exists in open literature. The model numerically solves the laminar one-dimensional (1D) Navier–Stokes equations using a two-step Richtmyer time variation diminishing (TVD) scheme with minmod flux limiter. Additional source terms account for viscous losses, wall heat transfer, flow leakage between rotor and stator endplates as well as torque generation through momentum change. Model validation was conducted in two steps. First of all, unsteady and steady predictive capabilities were tested on three-port pressure divider rotors from open literature. The results show that both steady port flow conditions as well as the wave action within the rotor can be predicted with good agreement. Further validation was done on an in-house developed and experimentally tested four-port, three-cycle, throughflow microwave rotor turbine featuring symmetrically cambered passage walls aimed at delivering approximately 500 W of shaft power. The numerical results depict trends for pressure ratio, shaft power, and outlet temperature reasonably well. However, the results also highlight the need to accurately measure leakage gaps when the machine is running in thermal equilibrium.

References

1.
Wilson
,
J.
, and
Paxson
,
D. E.
,
1993
, “
Jet Engine Performance Enhancement Through Use of a Wave-Rotor Topping Cycle
,”
NASA Memorandum
No. 4486.
2.
E.
,
Zauner
,
Y.-P.
,
Chyou
,
F. W.
, and
Althaus
,
R.
,
1993
, “
Gas Turbine Topping Stage Based on Energy Exchangers: Process and Performance
,”
ASME
Paper No. 93-GT-058. 10.1115/93-GT-058
3.
Snyder
,
P. H.
, and
Fish
,
R. E.
,
1996
, “
Assessment of a Wave Rotor Topped Demonstrator Gas Turbine Engine Concepts
,”
ASME
Paper No. 96-GT-041
. 10.1115/96-GT-041
4.
Welch
,
G. E.
,
1997
, “
Wave Engine Topping Cycle Assessment
,”
AIAA
Paper No. AIAA-97-0707.
5.
Welch
,
G. E.
,
Jones
,
S. M.
, and
Paxson
,
D. E.
,
1997
, “
Wave-Rotor-Enhanced Gas Turbine Engines
,”
ASME J. Eng. Gas Turbines Power
,
119
(
2
), pp.
469
477
.10.1115/1.2815598
6.
Nagashima
,
T.
,
Okamoto
,
K.
, and
Ribaud
,
Y.
,
2005
, “Cycles and Thermal System Integration Issues of Ultra-Micro Gas Turbines,”
RTO, Neuilly-sur-Seine
,
France
, Educational Notes RTO-EN-AVT-131.
7.
Akbari
,
P.
,
Nalim
,
R.
, and
Müller
,
N.
,
2006
, “
Performance Enhancement of Microturbine Engines Topped With Wave Rotors
,”
ASME J. Eng. Gas Turbines Power
,
128
(
1
), pp.
190
202
.10.1115/1.1924484
8.
Lenoble
,
G.
, and
Ogaji
,
S.
,
2010
, “
Performance Analysis and Optimization of a Gas Turbine Cycle Integrated With an Internal Combustion Wave Rotor
,”
Proc. Inst. Mech. Eng., Part A
,
224
(
7
), pp.
889
900
.10.1243/09576509JPE984
9.
Guzzella
,
L.
,
Wenger
,
U.
, and
Martin
,
R.
,
2000
, “
IC-Engine Downsizing and Pressure-Wave Supercharing for Fuel Economy
,”
SAE
Paper No. 2000-01-1019.
10.
Oguri
,
Y.
,
Suzuki
,
T.
,
Yoshida
,
M.
, and
Cho
,
M.
,
2001
, “
Research on Adaption of Pressure Wave Supercharger (PWS) to Gasoline Engine
,”
SAE
Paper No. 2004-01-0368.
11.
Weber
,
F.
,
Guzzella
,
L.
, and
Onder
,
C.
,
2002
, “
Modelling of a Pressure Wave Supercharger Including External Exhaust Gas Recirculation
,”
Proc. Inst. Mech. Eng., Part D
,
216
(
3
), pp.
217
235
.10.1243/0954407021529057
12.
Suzuki
,
T.
,
Oguri
,
Y.
,
K
,
U.
, and
Yoshida
,
M.
,
2004
, “
Experimental Investigation of Pressure Wave Supercharging for SI Engine
,”
ASME
Paper No. IMECE2004-62419
. 10.1115/IMECE2004-62419
13.
Spring
,
P.
,
Onder
,
C. H.
, and
Guzzella
,
L.
,
2007
, “
EGR Control of Pressure-Wave Supercharger IC Engines
,”
Control Eng. Pract.
,
15
(
12
), pp.
1520
1532
.10.1016/j.conengprac.2007.03.001
14.
Yan
,
L.
,
Dasen
,
Z.
,
Hongguang
,
Z.
,
Changwei
,
J.
,
Jiangguo
,
L.
, and
Tong
,
Z.
,
2008
, “
Experiment and CFD Investigation of Pressure-Wave Supercharger
,”
SAE
Paper No. 2008-01-1631. 10.4271/2008-01-1631
15.
Pohořelský
,
L.
,
Macek
,
J.
,
Polášek
,
M.
, and
Vítek
,
O.
,
2004
, “
Simulation of a COMPREX Pressure Exchanger in a 1-D Code
,”
SAE
Paper No. 2004-01-1000. 10.4271/2004-01-1000
16.
Lei
,
Y.
,
Zhou
,
D. S.
, and
Zhang
,
H. G.
,
2010
, “
Investigation on Performance of a Compression-Ignition Engine With Pressure-Wave Supercharger
,”
Energy
,
35
(
1
), pp.
85
93
.10.1016/j.energy.2009.08.035
17.
Zhao
,
J.
, and
Hu
,
D.
,
2017
, “
An Improved Wave Rotor Refrigerator Using an Outside Gas Flow for Recycling the Expansion Work
,”
Shock Waves
,
27
(
2
), pp.
325
332
.10.1007/s00193-016-0648-x
18.
Hu
,
D.
,
Li
,
R.
,
Liu
,
P.
, and
Zhao
,
J.
,
2016
, “
The Loss in Charge Process and Effects on Performance of Wave Rotor Refrigerator
,”
Int. J. Heat Mass Transfer
,
100
, pp.
497
507
.10.1016/j.ijheatmasstransfer.2016.04.084
19.
Hu
,
D.
,
Li
,
R.
,
Liu
,
P.
, and
Zhao
,
J.
,
2016
, “
The Design and Influence of Port Arrangement on an Improved Wave Rotor Refrigerator Performance
,”
Appl. Therm. Eng.
,
107
, pp.
207
217
.10.1016/j.applthermaleng.2016.06.168
20.
Pekkan
,
K.
, and
Nalim
,
M. R.
,
2003
, “
Two-Dimensional Flow and NOx Emissions in Deflagrative Internal Combustion Wave Rotor Configurations
,”
ASME J. Eng. Gas Turbines Power
,
125
(
3
), pp.
720
730
.10.1115/1.1586315
21.
Nalim
,
M. R.
,
Izzy
,
Z. A.
, and
Akbari
,
P.
,
2012
, “
Rotary Wave-Ejector Enhanced Pulse Detonation Engine
,”
Shock Waves
,
22
(
1
), pp.
23
38
.10.1007/s00193-011-0348-5
22.
M. Rajagopal
,
A. K.
, and
Nalim
,
R.
,
2012
, “
Wave-Rotor Pressure-Gain Combustion Analysis for Power Generation and Gas Turbine Applications
,”
ASME
Paper No. GTINDIA2012-9741
. 10.1115/GTINDIA2012-9741
23.
Pearson
,
R. D.
,
1985
, “
A Gas Wave-Turbine Engine Which Developed 35 HP and Performed Over a 6:1 Speed Ranges
,”
ONR/NAVAIR Wave Rotor Research and Technology Workshop.
24.
Pearson
,
R. D.
,
1986
, “
Thermodynamics and Gas Dynamics of Internal Combustion Engines, Volume II
,”
The Oxford Handbook of Innovation
,
D. E.
Winterbone
, and
S. C.
Low
, ed.,
Oxford University Press
, Oxford, UK.
25.
Mathur
,
A.
,
1985
, “
Design and Experimental Verification of Wave Rotor Cycles
,”
ONR/NAVAIR Wave Rotor Research and Technology Workshop
.
26.
R.
,
Taussig
,
P.
,
Cassady
,
J. Z. W. T.
, and
Klostermannt
,
E.
,
1983
, “
Investigation of Wave Rotor Turbofans for Cruise Missile Engines
,” Final Report Submitted by MSNW to DARPA (Contract N00140-82-C-9729).
27.
Weber
,
H. E.
,
1996
,
Shock Wave Engine Design
,
Wiley
,
New York
.
28.
Mathur
,
A.
, and
Shreeve
,
R. P.
,
1987
, “
Calculation of Unsteady Flow Processes in Wave Rotors
,”
AIAA
Paper No.
87
0011
.
29.
Mathur
,
A.
,
1986
, “
Code Development for TurbofanEngine Cycle Performance With and Without a Wave Rotor Component
,” Naval Postgraduate School, Monterey, CA, Report No. NPS67-86-006CR.
30.
Roberts
,
J. W.
,
1990
, “
Further Calculations of the Performance of Turbofan Engines Incorporating a Wave Rotor
,” M.S. thesis,
Naval Postgraduate School
,
Monterey, CA
.
31.
Salacka
,
T. F.
,
1985
, “
Review, Implementation and Test of the QAZID Computational Method With a View to Wave Rotor Applications
,” M.S. thesis,
Naval Postgraduate School
,
Monterey, CA
.
32.
Johnston
,
D. T.
,
1987
, “
Further Development of a One-Dimensional Unsteady Euler Code for Wave Rotor Applications
,” M.S. thesis,
Naval Postgraduate School
,
Monterey, CA
.
33.
Okamoto
,
K.
, and
Nagashima
,
T.
,
2003
, “
A Simple Numerical Approach of Micro Wave Rotor Gasdynamic Design
,” 16th International Symposium on Airbreathing Engines, Cleveland, OH, Aug. 31–Sept. 5,
Paper No. ISABE-2003-1213
.
34.
Okamoto
,
K.
,
Nagashima
,
T.
, and
Yamaguchi
,
K.
,
2003
, “
Introductory Investigation of Micro Wave Rotor
,”
International Gas Turbine Congress 2003, Tokyo, Japan.
35.
Fatsis
,
A.
,
Lafond
,
A.
, and
Ribaud
,
Y.
,
1998
, “
Preliminary Analysis of the Flow Inside a Three-Port Wave Rotor by Means of a Numerical Models
,”
Aerosp. Sci. Technol.
,
2
(
5
), pp.
289
300
.10.1016/S1270-9638(98)80006-0
36.
Fatsis
,
A.
,
Orfanoudakis
,
N. G.
,
Pavlou
,
D. G.
,
Panoutsopoulou
,
A.
, and
Vlachakis
,
N.
,
2006
, “
Unsteady Flow Modelling of a Pressure Wave Supercharger
,”
Proc. Inst. Mech. Eng. Part D
,
220
(
2
), pp.
209
218
.10.1243/095440706X72628
37.
Iancu
,
F.
,
Piechna
,
J.
, and
Müller
,
N.
,
2005
, “
Numerical Solutions for Ultra-Micro Wave Rotors (UμWR)
,”
AIAA
Paper No. 2005-5034. 10.2514/6.2005-5034
38.
Paxson
,
D. E.
,
1992
, “
A General Numerical Model for Wave Rotor Analysis
,” NASA Lewis Research Center, Cleveland, OH, Report No.
NASA-TM-105740
.https://ntrs.nasa.gov/search.jsp?R=19920022240
39.
Paxson
,
D.
, and
Wilson
,
J.
,
1993
, “
An Improved Numerical Model for Wave Rotor Design and Analysis
,”
AIAA
Paper No.
93
0482
.
40.
Paxson
,
D. E.
, and
Wilson
,
J.
,
1995
, “
Recent Improvements to and Validation of the One Dimensional NASA Wave Rotor Model
,” NASA Lewis Research Center, Cleveland, OH, Report No.
NASA-TM-106913
.https://ntrs.nasa.gov/search.jsp?R=19950019542&hterms=NASA-TM-106913&qs=N%3D0%26Ntk%3DAll%26Ntt%3DNASA-TM-106913%26Ntx%3Dmode%2520matchallpartial
41.
Paxson
,
D. E.
,
1995
, “
A Numerical Model for Dynamic Wave Rotor Analysis
,”
AIAA
Paper No.
95
2800
.
42.
Welch
,
G. E.
, and
Paxson
,
D. E.
,
1998
, “
Wave Turbine Analysis Tool Development
,” NASA Lewis Research Center, Cleveland, OH, Report No. NASA/TM–1998-208485.
43.
Chan
,
S.
, and
Liu
,
H.
,
2017
, “
Mass-Based Design and Optimization of Wave Rotors for Gas Turbine Engine Enhancement
,”
Shock Waves
,
27
(
2
), pp.
313
324
.10.1007/s00193-016-0646-z
44.
Chan
,
S.
,
Liu
,
H.
,
Xing
,
F.
, and
Song
,
H.
,
2018
, “
Wave Rotor Design Method With Three Steps Including Experimental Validation
,”
ASME J. Eng. Gas Turbines Power
,
140
(
11
), p.
111201
.10.1115/1.4038815
45.
Mustafa
,
A.
,
Martinez-Botas
,
R. F.
,
Pesiridis
,
A.
,
Chiong
,
M. S.
, and
Rajoo
,
S.
,
2014
, “
Assessment of Turbocharger Turbine Unsteady Flow Modelling Methodology on Engine Performance
,”
ASME
Paper No. ESDA2014-20392. 10.1115/ESDA2014-20392
46.
Costall
,
A.
,
2007
, “
A One-Dimensional Study of Unsteady Wave Propagation in Turbocharger Turbine
,” Ph.D. thesis,
Imperial College London
,
London
.
47.
Kentfield
,
J. A. C.
,
1969
, “
The Performance of Pressure-Exchanger Dividers and Equalizers
,”
ASME J. Basic Eng.
,
91
(
3
), pp.
361
369
.10.1115/1.3571118
48.
Wilson
,
J.
, and
Fronek
,
D.
,
1993
, “
Initial Results From the NASA-Lewis Wave Rotor Experiment
,”
AIAA
Paper No.
93
2521
.10.2514/6.1993-2521
49.
Witte
,
D. W.
,
Tatum
,
K.
, and
Williams
,
S. B.
,
1996
, “
Computation of Thermally Perfect Compressible Flow Properties
,”
AIAA
Paper No. 96-0681.10.2514/6.1996-681
50.
Smith
,
G. P.
,
Golden
,
D. M.
,
Frenklach
,
M.
,
Moriarty
,
N. W.
,
Eiteneer
,
B.
,
Goldenberg
,
M.
,
Bowman
,
C. T.
,
Hanson
,
R. K.
,
Song
,
S.
,
Gardiner
,
W. C.
, Jr.
,
Lissianski
,
V. V.
, and
Qin
,
Z.
,
2019
, “GRI-Mech 3.0,” The Gas Research Institute, accessed July 30, 2019, http://www.me.berkeley.edu/grimech/
51.
Martin
,
C. R.
,
2010
, “
HOT: Thermodynamic Tools for Matlab
,” Virginia Active Combustion Control Group, accessed July 29, 2019, http://hot-tdb.sourceforge.net/
52.
Winterbone
,
D. E.
, and
Pearson
,
R. J.
,
2000
,
Theory of Engine Manifold Design: Wave Action Methods for IC Engines
,
Professional Engineering Publishing Limited,
London.
53.
Kentfield
,
J. A. C.
,
1993
,
Nonsteady, One-Dimensional, Internal, Compressible Flows
,
Oxford Engineering Sciences
, Oxford, UK.
54.
Kuzay
,
T. M.
, and
Scott
,
C. J.
,
1977
, “
Turbulent Heat Transfer Studies in Annulus With Inner Cylinder Rotation
,”
ASME J. Heat Transfer
,
99
(
1
), pp.
12
19
.10.1115/1.3450635
55.
Larosiliere
,
L. M.
,
1993
, “
Three-Dimensional Numerical Simulation of Gradual Opening in a Wave Rotor Passage
,”
AIAA
Paper No.
93
2526
.
56.
Akbari
,
P.
, and
Müller
,
N.
,
2003
, “
Preliminary Design Procedure for Gas Turbine Topping Reverse-Flow Wave Rotors
,”
International Gas Turbine Congress
,
Tokyo, Japan
.
57.
Akbari
,
P.
, and
Müller
,
N.
,
2003
, “
Gas Dynamic Design Analyses of Charging Zone for Reverse-Flow Pressure Wave Superchargers
,”
ASME
Paper No. ICES2003-0690.
10.1115/ICES2003-0690
58.
Iancu
,
F.
,
Piechna
,
J.
, and
Müller
,
N.
,
2008
, “
Basic Design Scheme for Wave Rotors
,”
Shock Waves
,
18
(
5
), pp.
365
378
.10.1007/s00193-008-0165-7
59.
Denton
,
J. D.
,
1993
, “
Loss Mechanisms in Turbomachines
,”
ASME J. Turbomach.
,
115
(
4
), pp.
621
656
.10.1115/1.2929299
You do not currently have access to this content.