The low-swirl injector (LSI) is a simple and cost-effective lean premixed combustion method for natural-gas turbines to achieve ultralow emissions (<5 ppm NOx and CO) without invoking tight control of mixture stoichiometry, elaborate active tip cooling, or costly materials and catalysts. To gain an understanding of how this flame stabilization mechanism remains robust throughout a large range of Reynolds numbers, laboratory experiments were performed to characterize the flowfield of natural-gas flames at simulated partial load conditions. Also studied was a flame using simulated landfill gas of 50% natural gas and 50% CO2. Using particle image velocimetry, the nonreacting and reacting flowfields were measured at five bulk flow velocities. The results show that the LSI flowfield exhibits similarity features. From the velocity data, an analytical expression for the flame position as function of the flowfield characteristics and turbulent flame speed has been deduced. It shows that the similarity feature coupled with a linear dependency of the turbulent flame speed with bulk flow velocity enables the flame to remain relatively stationary throughout the load range. This expression can be the basis for an analytical model for designing LSIs that operate on alternate gaseous fuels such as slower burning biomass gases or faster burning coal-based syngases.

1.
Richards
,
G. A.
,
Straub
,
D. L.
, and
Robey
,
E. H.
, 2003, “
Passive Control of Combustion Dynamics in Stationary Gas Turbines
,”
J. Propul. Power
0748-4658,
19
(
5
), pp.
795
810
.
2.
Mongia
,
H. C.
,
Held
,
T. J.
,
Hsiao
,
G. C.
, and
Pandalai
,
R. P.
, 2003, “
Challenges and Progress in Controlling Dynamics in Gas Turbine Combustors
,”
J. Propul. Power
0748-4658,
19
(
5
), pp.
822
829
.
3.
Muruganandam
,
T. M.
,
Nair
,
S.
,
Scarborough
,
D.
,
Neumeier
,
Y.
,
Jagoda
,
J.
,
Lieuwen
,
T.
,
Seitzman
,
J.
, and
Zinn
,
B.
, 2005, “
Active Control of Lean Blowout for Turbine Engine Combustors
,”
J. Propul. Power
0748-4658,
21
(
5
), pp.
807
814
.
4.
Chan
,
C. K.
,
Lau
,
K. S.
,
Chin
,
W. K.
, and
Cheng
,
R. K.
, 1992, “
Freely Propagating Open Premixed Turbulent Flames Stabilized by Swirl
,”
Sym. (Int.) Combust., [Proc.]
0082-0784,
24
, pp.
511
518
.
5.
Bedat
,
B.
, and
Cheng
,
R. K.
, 1995, “
Experimental Study of Premixed Flames in Intense Isotropic Turbulence
,”
Combust. Flame
0010-2180,
100
(
3
), pp.
485
494
.
6.
Cheng
,
R. K.
, 1995, “
Velocity and Scalar Characteristics of Premixed Turbulent Flames Stabilized By Weak Swirl
,”
Combust. Flame
0010-2180,
101
(
1–2
), pp.
1
14
.
7.
Plessing
,
T.
,
Kortschik
,
C.
,
Mansour
,
M. S.
,
Peters
,
N.
, and
Cheng
,
R. K.
, 2000, “
Measurement of the Turbulent Burning Velocity and the Structure of Premixed Flames on a Low Swirl Burner
,”
Proc. Combust. Inst.
1540-7489,
28
, pp.
359
366
.
8.
Shepherd
,
I. G.
, and
Cheng
,
R. K.
, 2001, “
The Burning Rate of Premixed Flames in Moderate and Intense Turbulence
,”
Combust. Flame
0010-2180,
127
(
3
), pp.
2066
2075
.
9.
Cheng
,
R. K.
,
Shepherd
,
I. G.
,
Bedat
,
B.
, and
Talbot
,
L.
, 2002, “
Premixed Turbulent Flame Structures in Moderate and Intense Isotropic Turbulence
,”
Combust. Sci. Technol.
0010-2202,
174
(
1
), pp.
29
59
.
10.
Cheng
,
R. K.
,
Yegian
,
D. T.
,
Miyasato
,
M. M.
,
Samuelsen
,
G. S.
,
Pellizzari
,
R.
,
Loftus
,
P.
, and
Benson
,
C.
, 2000, “
Scaling and Development of Low-Swirl Burners for Low-Emission Furnaces and Boilers
,”
Proc. Combust. Inst.
1540-7489,
28
, pp.
1305
1313
.
11.
Littlejohn
,
D.
,
Majeski
,
M. J.
,
Tonse
,
S.
,
Castaldini
,
C.
, and
Cheng
,
R. K.
, 2002, “
Laboratory Investigation of an Untralow NOx Premixed Combustion Concept for Industrial Boilers
,”
Proc. Combust. Inst.
1540-7489,
29
, pp.
1115
1121
.
12.
Johnson
,
M. R.
,
Littlejohn
,
D.
,
Nazeer
,
W. A.
,
Smith
,
K. O.
, and
Cheng
,
R. K.
, 2005, “
A Comparison of the Flowfields and Emissions of High-swirl Injectors and Low-swirl Injectors for Lean Premixed Gas Turbines
,”
Proc. Combust. Inst.
1540-7489,
30
, pp.
2867
2874
.
13.
Nazeer
,
W. A.
,
Smith
,
K. O.
,
Sheppard
,
P.
,
Cheng
,
R. K.
, and
Littlejohn
,
D.
, 2006, “
Full Scale Testing of a Low Swirl Fuel Injector Concept for Ultra-Low NOx Gas Turbine Combustion Systems
,” Paper No. GT2006-90150.
14.
Littlejohn
,
D.
, and
Cheng
,
R. K.
, 2006, “
Fuel Effects on a Low-swirl Injector for Lean Premixed Gas Turbines
,”
Proc. Combust. Inst.
1540-7489,
31
, pp.
3155
3162
.
15.
Beer
,
J. M.
, and
Chigier
,
N. A.
, 1972,
Combustion Aerodynamics
,
Applied Science
,
London
.
16.
Mellings
,
A.
, 1997, “
Tracer Particles and Seeding for Particle Image Velocimetry
,”
Meas. Sci. Technol.
0957-0233,
8
, pp.
1406
1416
.
17.
Wernet
,
M. P.
, 1999, “
Fuzzy Logic Enhanced Digital PIV Processing Software
,”
18th International Congress on Instrumentation for Aerospace Simulation Facilities
,
Toulouse, France
.
18.
Yegian
,
D. T.
, and
Cheng
,
R. K.
, 1998, “
Development of a Lean Premixed Low-Swirl Burner for Low NOx Practical Applications
,”
Combust. Sci. Technol.
0010-2202,
139
(
1–6
), pp.
207
227
.
You do not currently have access to this content.