In modern aero-engines, the lubrication system holds a key role due to the demand for high reliability standards. An aero-engine bearing chamber contains components like bearings and gears. Oil is used for lubrication and for heat removal. In order to retain the oil in a bearing chamber, pressurized seals are used. These are pressurized using air from the compressor. In order to avoid overpressurization of the bearing chamber, air/oil passages are provided in the bearing chamber. At the top, a vent pipe discharges most of the sealing air and at the bottom, a scavenge pipe is used for discharging the oil by means of a pump (scavenge pump). The scavenge pipe is setup in most cases by tubes of circular or noncircular cross sections. When the scavenge pipe has to be routed in a way that sharp bends or elbows are unavoidable, flexible (corrugated) pipes can be used. Because of the corrugation, considerable flow resistance with high-pressure drop can result. This may cause overpressurization of the bearing compartment with oil loss into the turbomachinery with possibility of ignition, coking (carbon formation), or contamination of the aircraft’s air conditioning system. It is therefore important for the designer to be capable to predict the system’s pressure balance behavior. A real engine bearing chamber sealed by brush seals was used for generating different air/oil mixtures thus corresponding to different engine operating conditions. The mixtures were discharged through a scavenge pipe which was partly setup by corrugated tubes. Instead of a mechanical pump, an ejector was used for evacuating the bearing chamber. An extensive survey covering the existing technical literature on corrugated tube pressure drop was performed and is presented in this paper. The survey has covered both single-phase and multiphase flows. Existing methods were checked against the test results. The method which was most accurately predicting lean air test results from the rig was benchmarked and was used as the basis for extending into a two-phase flow pressure drop correlation by applying two-phase flow multiplier techniques similar to Lockhart and Martinelli. Comparisons of the new two-phase flow pressure drop correlation with an existing correlation by Shannak are presented for mixtures like air/oil, air/water, air/diesel, and air/kerosene. Finally, numerical analysis results using ansys cfx version 15 are presented.

References

1.
“Hansa-Flex Group,” Germany, www.hansa-flex.com
2.
Kauder
,
K.
,
1974
,
Dissipation inkompressibler Medien in Rohrleitungen
, Vol.
25
,
Heizung, Lueftung/Klimatechnik, Haustechnik (HLH)
,
Düsseldorf
, pp.
226
232
.
3.
Kauder
,
K.
,
1972
, “
Ueber den Strömungswiderstand in gewellten Rohren–Ein Beitrag zum Rauhigkeitsproblem
,”
Konstruktion
, Vol.
24
,
Springer-Verlag
,
Berlin, Heidelberg, New York
, pp.
169
179
.
4.
Gropp
,
R.
,
1974
, “
Durchflusswiderstand von flexiblen metallischen Leitungen
,”
Konstruktion
, Vol.
26
,
Springer Verlag
,
Berlin, New York
, pp.
486
489
.
5.
Shannak
,
B.
,
Al-Odat
,
M. Q.
, and
Damseh
,
R. A.
,
2008
, “
Two Phase Flow Resistance in Flexible Metal Hoses
,”
Nucl. Eng. Des.
,
238
(
10
), pp.
2772
2778
.
6.
Shannak
,
B.
,
2008
, “
Frictional Pressure Drop of Gas Liquid Two-Phase Flow in Pipes
,”
Nucl. Eng. Des.
,
238
(
12
), pp.
3277
3284
.
7.
Shannak
,
B.
,
Damseh
,
R. A.
,
Al-Odat
,
M. Q.
,
Al-Shannag
,
M.
, and
Azzi
,
A.
,
2010
, “
Two Phase Flow Through Corrugated U-Tube
,”
Proc. Inst. Mech. Eng., Part C
,
224
(11), pp.
2408
2417
.
8.
Webster
,
M. J.
, and
Metcalf
,
L. R.
,
1959
, “
Friction Factor in Corrugated Metal Pipe
,”
J. Hydraul. Div., Am. Soc. Civ. Eng.
,
HY9
, pp.
35
67
.
9.
Yeaple
,
F.
,
1995
, “
Flow in Corrugated Hose
,”
Fluid Power Design Handbook
, 3rd ed.,
CRC Press
,
Boca Raton, FL
.
10.
Hawthorne
,
R.
, and
Helms
,
H. C.
,
1963
, “
Flow in Corrugated Hose
,”
Prod. Eng.
,
34
, pp.
98
100
.
11.
Bernhard
,
D. M.
, and
Hsieh
,
C. K.
,
1996
, “
Pressure Drop in Corrugated Pipes
,”
ASME J. Fluids Eng.
,
118
(
2
), pp.
409
410
.
12.
Ahn
,
H.
, and
Uslu
,
I.
,
2013
, “
Experimental Investigation of Pressure Drop in Corrugated Pipes
,”
ASME
Paper No. IMECE2013-66061.
13.
“Witzenmann GmbH,” www.witzenmann.de
14.
Hilding
,
K.
,
1938
, “
Pressure Losses for Fluid Flow in 90° Pipe Bends
,”
J. Res. National Bureau Stand.
,
21
, pp.
1
18
.
15.
“Torgen GmbH,” www.torgen.com
16.
“SOLAR Kurt Birnbreier GmbH,” www.solarmetalflex.com
17.
Witzenmann GmbH,
2014
,
Metal Hose Manual
,
Witzenmann GmbH
, Pforzheim, Germany, pp.
76
86
.
18.
Levy
,
S.
,
1999
,
Two-Phase Flow in Complex Systems
,
Wiley
,
Toronto
, pp.
90
107
.
19.
Storek
,
H.
, and
Brauer
,
H.
,
1980
, “
Reibungsdruckverlust der adiabaten Gas/Fluessig-keitstroemung in horizontalen und vertikalen Rohren
,”
VDI Forschungsheft
,
VDI Verlag
, Düsseldorf, pp.
8
9
.
20.
Taitel
,
Y.
, and
Dukler
,
A. E.
,
1976
, “
A Model for Predicting Flow Regime Transitions in Horizontal and Near Horizontal Gas-Liquid Flow
,”
AIChE J.
,
22
(
1
), pp.
47
55
.
21.
Tye
,
R. P.
,
1969
,
Thermal Conductivity
, Vol.
1
,
Academic Press
,
New York
, p.
319
.
22.
McAdams
,
W. H.
,
Woods
,
W. K.
, and
Bryan
,
R. L.
,
1942
, “
Vaporization Inside Horizontal Tubes-II- Benzene–Oil Mixtures
,”
Trans. ASME
,
64
(3), pp.
193
200
.
23.
Cicchitti
,
A.
,
Lombardi
,
C.
,
Silvestri
,
M.
,
Soldaini
,
G.
, and
Zavattarelli
,
R.
,
1960
, “
Two-Phase Cooling Experiments–Pressure Drop, Heat Transfer and Burnout Measurements
,”
Energ. Nucl.
,
7
(
6
), pp.
407
425
.
24.
Flouros
,
M.
,
Iatrou
,
G.
,
Yakinthos
,
K.
,
Cottier
,
F.
, and
Hirschmann
,
M.
,
2015
, “
Two-Phase Flow Heat Transfer and Pressure Drop in Horizontal Scavenge Pipes in an Aero-engine
,”
ASME J. Eng. Gas Turbines Power
,
137
(
8
), p.
081901
.
25.
Baker
,
O.
,
1954
,
Design of Pipelines for Simultaneous Flow of Oil and Gas
, Vol.
53
,
Society of Petroleum Engineers
,
Dallas
, pp.
185
195
.
26.
Lockhart
,
R. W.
, and
Martinelli
,
R. C.
,
1949
, “
Proposed Correlation for Isothermal Two-Phase, Two-Component Flow in Pipes
,”
Chem. Eng. Prog. Mag.
,
45
(
1
), pp.
39
48
.
27.
Chisholm
,
D.
,
1973
, “
Pressure Gradients Due to Friction During the Flow of Evaporating Two-Phase Mixtures in Smooth Tubes and Channels
,”
Int. J. Heat Mass Transfer
,
16
(
2
), pp.
347
358
.
28.
Chisholm
,
D.
,
1983
,
Two Phase Flow in Pipelines and Heat Exchangers
,
George Godwin
,
London
.
29.
Müller-Steinhagen
,
H.
, and
Heck
,
K.
,
1986
, “
A Simple Friction Pressure Drop Correlation for Two-Phase Flow in Pipes
,”
Chem. Eng. Process
,
20
(
6
), pp.
297
308
.
30.
Friedel
,
L.
,
1979
, “
Improved Friction Pressure Drop Correlations for Horizontal and Vertical Two Phase Pipe Flow
,”
European Two-Phase Flow Group Meeting
, Ispra, Italy, Paper E2.
31.
Xu
,
Y.
,
Fang
,
X.
,
Su
,
X.
,
Zhou
,
Z.
, and
Chen
,
W.
,
2012
, “
Evaluation of Frictional Pressure Drop Correlations for Two-Phase Flow in Pipes
,”
Nucl. Eng. Des.
,
253
, pp.
86
97
.
32.
Lombardi
,
C.
, and
Pedrocci
,
E.
,
1972
, “
A Pressure Drop Correlation in Two Phase Flow
,”
Energ. Nucl.
,
19
(
2
), pp.
91
99
.
33.
Blasius
,
H.
,
1913
, “
Das Aehnlichkeitsgesetz bei Reibungsvorgängen in Flüssigkeiten
,”
Mitteilungen über Forschungsarbeiten auf dem Gebiete des Ingenieurwesens
, Vol.
131
,
VDI-Verlag
,
Berlin
.
34.
Idelchik
,
I. E.
,
1986
,
Handbook of Hydraulic Resistance
, 2nd ed.,
Springer-Verlag
,
Berlin
.
35.
VDI-Gesellschaft Verfahrenstechnik und Chemiewesen,
2010
, “
Two-Phase Gas-Liquid Flow
,”
VDI Heat Atlas
,
Springer-Verlag Berlin
, pp.
1130
1131
.
36.
Domanski
,
P. A.
, and
Hermes
,
C. J. L.
,
2006
, “
An Improved Correlation for Two-Phase Pressure Drop of R-22 and R-410a in 180° Return Bends
,”
11th Brazilian Congress of Thermal Sciences and Engineering, ENCIT 2006, Brazilian Society of Mechanical Sciences and Engineering
, Curitiba, Brazil, Paper No. CIT06-1051.
37.
Azzi
,
A.
,
Friedel
,
L.
, and
Belaadi
,
S.
,
2000
, “
Two-Phase Gas/Liquid Flow Pressure Loss in Bends
,”
Forsch. Ingenieurwes.
,
65
(
7
), pp.
309
318
.
38.
Sanchez Silva
,
F.
,
Luna Resendiz
,
J. C.
,
Carvajal Mariscal
,
L.
, and
Tolentino Eslava
,
R.
,
2010
, “
Pressure Drop Models Evaluation for Two-Phase Flow in 90 Degree Horizontal Elbows
,”
Ingeniera Mec., Technol. Y Desarrollo
,
3
(
4
), pp.
115
122
.
39.
Gnielinski
,
V.
,
1979
, “
Equations for Calculating Heat Transfer in Single Tube Rows and Banks of Tubes in Transverse Flow
,”
Int. Chem. Eng.
,
19
(
3
), pp.
380
390
.
You do not currently have access to this content.