Abstract

Gas turbine trip is an operational event that arises when undesirable operating conditions are approached or exceeded, and predicting its onset is a largely unexplored area. The application of novel artificial intelligence methods to this problem is interesting both from the computer science and the engineering point of view, and the results may be relevant in both the academia and the industry. In this paper, we consider data gathered from a fleet of Siemens industrial gas turbines in operation that includes several thermodynamic variables observed during a long period of operation. To assess the possibility of predicting trip events, we first apply a new, systematic statistical analysis to identify the most important variables, then we use a novel machine learning technique known as temporal decision tree, which differs from canonical decision tree because it allows a native treatment of the temporal component, and has an elegant logical interpretation that eases the posthoc validation of the results. Finally, we use the learned models to extract statistical rules. As a result, we are able to select the five most informative variables, build a predictive model with an average accuracy of 73%, and extract several rules. To our knowledge, this is the first attempt to use such an approach not only in the gas turbine field but also in the whole industry domain.

References

1.
Bhargava
,
R.
,
2017
,
Technical Dictionary on the Gas Turbine Technology
,
Innovative Turbomachinery Technologies Corp
, TX.
2.
Morini
,
M.
,
Pinelli
,
M.
, and
Venturini
,
M.
,
2007
, “
Development of a One-Dimensional Modular Dynamic Model for the Simulation of Surge in Compression Systems
,”
ASME J. Turbomach.
,
129
(
3
), pp.
437
447
.10.1115/1.2447757
3.
Morini
,
M.
,
Pinelli
,
M.
, and
Venturini
,
M.
,
2009
, “
Analysis of Biogas Compression System Dynamics
,”
Appl. Energy
,
86
(
11
), pp.
2466
2475
.10.1016/j.apenergy.2009.03.008
4.
Pezzini
,
P.
,
Tucker
,
D.
, and
Traverso
,
A.
,
2013
, “
Avoiding Compressor Surge During Emergency Shut-Down Hybrid Turbine Systems
,”
ASME J. Eng. Gas Turbines Power
,
135
(
10
), p.
102602
.10.1115/1.4025036
5.
Kudo
,
M.
,
Toyama
,
J.
, and
Shimbo
,
M.
,
1999
, “
Multidimensional Curve Classification Using Passing–Through Regions
,”
Pattern Recognit. Lett.
,
20
(
11–13
), pp.
1103
1111
.10.1016/S0167-8655(99)00077-X
6.
Caiado
,
J.
,
Crato
,
N.
, and
Peña
,
D.
,
2006
, “
A Periodogram-Based Metric for Time Series Classification
,”
Comput. Stat. Data Anal.
,
50
(
10
), pp.
2668
2684
.10.1016/j.csda.2005.04.012
7.
Fulcher
,
B. D.
, and
Jones
,
N. S.
,
2014
, “
Highly Comparative Feature-Based Time-Series Classification
,”
IEEE Trans. Knowl. Data Eng.
,
26
(
12
), pp.
3026
3037
.10.1109/TKDE.2014.2316504
8.
Malhotra
,
P.
,
Tv
,
V.
,
Vig
,
L.
,
Agarwal
,
P.
, and
Shroff
,
G. M.
,
2017
, “
Timenet: Pre-Trained Deep Recurrent Neural Network for Time Series Classification
,”
Proc. of the 25th European Symposium on Artificial Neural Networks
, Computational Intelligence and Machine Learning, Bruges, Belgium, Apr. 26–28, pp.
607
612
.
9.
Längkvist
,
M.
,
Karlsson
,
L.
, and
Loutfi
,
A.
,
2014
, “
A Review of Unsupervised Feature Learning and Deep Learning for Time-Series Modeling
,”
Pattern Recognit. Lett.
,
42
, pp.
11
24
.10.1016/j.patrec.2014.01.008
10.
Lu
,
F.
,
Ju
,
H.
, and
Huang
,
J.
,
2016
, “
An Improved Extended Kalman Filter With Inequality Constraints for Gas Turbine Engine Health Monitoring
,”
Aerosp. Sci. Technol.
,
58
, pp.
36
47
.10.1016/j.ast.2016.08.008
11.
Qin
,
S.
, and
Chiang
,
L.
,
2019
, “
Advances and Opportunities in Machine Learning for Process Data Analytics
,”
Comput. Chem. Eng.
,
126
, pp.
465
473
.10.1016/j.compchemeng.2019.04.003
12.
De Giorgi
,
M.
,
Campilongo
,
S.
, and
Ficarella
,
A.
,
2018
, “
A Diagnostics Tool for Aero-Engines Health Monitoring Using Machine Learning Technique
,”
Energy Procedia
,
148
, pp.
860
867
.10.1016/j.egypro.2018.08.109
13.
Zhong
,
S.
,
Fu
,
S.
, and
Lin
,
L.
,
2019
, “
A Novel Gas Turbine Fault Diagnosis Method Based on Transfer Learning With CNN
,”
Measurement
,
137
, pp.
435
453
.10.1016/j.measurement.2019.01.022
14.
Amozegar
,
M.
, and
Khorasani
,
K.
,
2016
, “
An Ensemble of Dynamic Neural Network Identifiers for Fault Detection and Isolation of Gas Turbine Engines
,”
Neural Networks
,
76
(
01
), pp.
106
121
.10.1016/j.neunet.2016.01.003
15.
Bai
,
M.
,
Liu
,
J.
,
Chai
,
J.
,
Zhao
,
X.
, and
Yu
,
D.
,
2020
, “
Anomaly Detection of Gas Turbines Based on Normal Pattern Extraction
,”
Appl. Therm. Eng.
,
166
, p.
114664
.10.1016/j.applthermaleng.2019.114664
16.
Naderi
,
E.
, and
Khorasani
,
K.
,
2018
, “
Data-Driven Fault Detection, Isolation and Estimation of Aircraft Gas Turbine Engine Actuator and Sensors
,”
Mech. Syst. Signal Process.
,
100
, pp.
415
438
.10.1016/j.ymssp.2017.07.021
17.
Wong
,
P.
,
Yang
,
Z.
,
Vong
,
C.
, and
Zhong
,
J.
,
2014
, “
Real-Time Fault Diagnosis for Gas Turbine Generator Systems Using Extreme Learning Machine
,”
Neurocomputing
,
128
, pp.
249
257
.10.1016/j.neucom.2013.03.059
18.
Sciavicco
,
G.
, and
Stan
,
I.
,
2020
, “
Knowledge Extraction With Interval Temporal Logic Decision Trees
,”
Proc. of the 27th International Symposium on Temporal Representation and Reasoning (TIME)
, Vol.
178
of LIPIcs, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, pp.
9:1
9:16
.
19.
Manzella
,
F.
,
Pagliarini
,
G.
,
Sciavicco
,
G.
, and
Stan
,
I.
,
2021
, “
Interval Temporal Random Forests With an Application to COVID-19 Diagnosis
,”
Proc. of the 28th International Symposium on Temporal Representation and Reasoning (TIME)
, Vol.
206
of LIPIcs, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, pp.
7:1
7:18
.
20.
Lubba
,
C.
,
Sethi
,
S.
,
Knaute
,
P.
,
Schultz
,
S.
,
Fulcher
,
B.
, and
Jones
,
N.
,
2019
, “
Catch22: Canonical Time-Series Characteristics - Selected Through Highly Comparative Time-Series Analysis
,”
Data Min. Knowl. Discov.
,
33
(
6
), pp.
1821
1852
.10.1007/s10618-019-00647-x
21.
Christ
,
M.
,
Braun
,
N.
,
Neuffer
,
J.
, and
Kempa-Liehr
,
A.
,
2018
, “
Time Series Feature Extraction on Basis of Scalable Hypothesis Tests (Tsfresh – a Python Package)
,”
Neurocomputing
,
307
, pp.
72
77
.10.1016/j.neucom.2018.03.067
22.
Losi
,
E.
,
Venturini
,
M.
,
Manservigi
,
L.
,
Ceschini
,
G.
,
Bechini
,
G.
,
Cota
,
G.
, and
Riguzzi
,
F.
,
2021
, “
Structured Methodology for clustering gas turbine Transients by Means of Multivariate Time Series
,”
ASME J. Eng. Gas Turbines Power
,
143
(
3
), pp.
1
13
.10.1115/1.4049503
23.
Losi
,
E.
,
Venturini
,
M.
,
Manservigi
,
L.
,
Ceschini
,
G.
,
Bechini
,
G.
,
Cota
,
G.
, and
Riguzzi
,
F.
,
2021
, “
Data Selection and Feature Engineering for the Application of Machine Learning to the Prediction of Gas Turbine Trip
,”
ASME
Paper No. GT2021-58914. 10.1115/GT2021-58914
24.
Losi
,
E.
,
Venturini
,
M.
,
Manservigi
,
L.
,
Ceschini
,
G. F.
,
Bechini
,
G.
,
Cota
,
G.
, and
Riguzzi
,
F.
,
2022
, “
Prediction of Gas Turbine Trip: A Novel Methodology Based on Random Forest Models
,”
ASME J. Eng. Gas Turbines Power
,
144
(
3
), p.
031025
.10.1115/1.4053194
25.
Losi
,
E.
,
Venturini
,
M.
,
Manservigi
,
L.
, and
Bechini
,
G.
,
2022
, “
Detection of the Onset of Trip Symptoms Embedded in Gas Turbine Operating Data
,”
ASME
Paper No. GT2022-80666. 10.1115/GT2022-80666
26.
Breloff
,
T.
, and
Community
,
J.
,
2021
, “
Statsplots.jl, v0.14.29
,” accessed Nov. 24, 2022, https://github.com/JuliaPlots/StatsPlots.jl
27.
Mann
,
H. B.
, and
Whitney
,
D. R.
,
1947
, “
On a Test of Whether One of Two Random Variables is Stochastically Larger Than the Other
,”
Ann. Math. Stat.
,
18
(
1
), pp.
50
60
.10.1214/aoms/1177730491
You do not currently have access to this content.