Abstract

Cast polycrystalline nickel-base superalloys are typically used for critical high temperature aerospace and automotive components, such as turbine blades or turbocharger wheels. These high temperature components can undergo creep damage caused by, e.g., centrifugal forces on the turbine rotor blades, as well as high-cycle fatigue (HCF) from, for instance, vibrations of the rotor blade. Therefore, both, creep resistance and fatigue strength are important mechanical properties of these materials. The study presented here addresses the introduction of creep damage and its influence on the high-cycle fatigue behavior. For this purpose, fatigue specimens of coarse-grained Alloy 247 LC CC blade root material were prestressed on a pneumatic creep test rig to achieve creep-induced microstructural damage. The isothermal 900 °C short-time creep investigations below 1000 h test duration were performed at different tensile stresses which result in different strain rates. After the creep tests, scanning electron- and optical microscopy investigations of metallographic cross section of selected specimens were performed to determine the creep-induced grain boundary damage such as pore count, pore size, and coarsening of the γ' structure. This was followed by uniaxial, stress-controlled isothermal 850 °C high cycle fatigue tests on undamaged and predamaged specimens at a frequency of 10 Hz and a load ratio of R = −1. Subsequently, fractographic and cross section investigations, which provide information on the fatigue cracking, the failure initiating defects, and the pore morphology, were performed. The results of this study show that the degree of creep induced porosity is a dominant structural parameter for the HCF behavior of the investigated nickel-base superalloy.

References

1.
Reed
,
R. C.
,
2008
,
The Superalloys: Fundamentals and Applications
,
Cambridge University Press
, Cambridge, UK.
2.
Lin
,
H.
,
Geng
,
H.
,
Zhang
,
Y.
,
Li
,
H.
,
Liu
,
X.
,
Zhou
,
X.
, and
Yu
,
L.
,
2019
, “
Fatigue Strength and Life Prediction of a MAR-M247 Nickel-Base Superalloy Gas Turbine Blade With Multiple Carbide Inclusions
,”
Strength Mater.
,
51
(
1
), pp.
102
112
.10.1007/s11223-019-00055-y
3.
Boismier
,
D. A.
, and
Sehitoglu
,
H.
,
1990
, “
Thermo-Mechanical Fatigue of Mar-M247: Part 1—Experiments
,”
ASME J. Eng. Mater. Technol.
,
112
(
1
), pp.
68
79
.10.1115/1.2903189
4.
He
,
S.
,
Shang
,
H.
,
Fernández-Caballero
,
A.
,
Warren
,
A. D.
,
Knowles
,
D. M.
,
Flewitt
,
P. E. J.
, and
Martin
,
T. L.
,
2021
, “
The Role of Grain Boundary Ferrite Evolution and Thermal Aging on Creep Cavitation of Type 316H Austenitic Stainless Steel
,”
Mater. Sci. Eng.: A
,
807
, p.
140859
.10.1016/j.msea.2021.140859
5.
Slater
,
T. J. A.
,
Bradley
,
R. S.
,
Bertali
,
G.
,
Geurts
,
R.
,
Northover
,
S. M.
,
Burke
,
M. G.
,
Haigh
,
S. J.
,
Burnett
,
T. L.
, and
Withers
,
P. J.
,
2017
, “
Multiscale Correlative Tomography: An Investigation of Creep Cavitation in 316 Stainless Steel
,”
Sci. Rep.
,
7
(
1
), p.
7332
.10.1038/s41598-017-06976-5
6.
Schweizer
,
C.
,
Seifert
,
T.
,
Nieweg
,
B.
,
von Hartrott
,
P.
, and
Riedel
,
H.
,
2011
, “
Mechanisms and Modelling of Fatigue Crack Growth Under Combined Low and High Cycle Fatigue Loading
,”
Int. J. Fatigue
,
33
(
2
), pp.
194
202
.10.1016/j.ijfatigue.2010.08.008
7.
Bi
,
Z.
,
Zhang
,
M.
,
Dong
,
J.
,
Luo
,
K.
, and
Wang
,
J.
,
2010
, “
A New Prediction Model of Steady State Stress Based on the Influence of the Chemical Composition for Nickel-Base Superalloys
,”
Mater. Sci. Eng.: A
,
527
(
16–17
), pp.
4373
4382
.10.1016/j.msea.2010.03.075
8.
Campbell
,
C.
,
Zhao
,
J.
, and
Henry
,
M.
,
2004
, “
Comparison of Experimental and Simulated Multicomponent Ni-Base Superalloy Diffusion Couples
,”
J. Phase Equilib. Diffus.
,
25
(
1
), pp.
6
15
.10.1007/s11669-004-0167-9
9.
Harris
,
K.
,
Erickson
,
G.
, and
Schwer
,
R.
,
1984
, “
MAR M 247 Derivations - CM 247 LC DS Alloy and CMSX Single Crystal Alloys: Properties & Performance
,”
Trans. Metall. Soc. AIME
,
221
230
.https://www.tms.org/superalloys/10.7449/1984/Superalloys_1984_221_230.pdf
10.
Oakey
,
J. E.
, ed.,
2011
,
Power Plant Life Management and Performance Improvement Woodhead Publishing Series in Energy
,
Woodhead Publishing
, Cambridge, UK.
11.
Ardell
,
A. J.
, and
Nicholson
,
R. B.
,
1966
, “
The Coarsening of γ' in Ni-Al Alloys
,”
J. Phys. Chem. Solids
,
27
(
11–12
), pp.
1793
1794
.10.1016/0022-3697(66)90110-7
12.
Engel
,
B.
,
Beck
,
T.
, and
Schmitz
,
S.
,
2018
, “
High Temperature Low-Cycle-Fatigue of the Ni-Base Superalloy René80
,” Proceedings of the Eighth International Conference on Low Cycle Fatigue (
LCF8
), Dresden, Germany, June 27–29, pp. 23–28
.https://www.researchgate.net/publication/322211910_HIGH_TEMPERATURE_LOW-CYCLE-FATIGUE_OF_THE_NI-BASE_SUPERALLOY_RENE80
13.
Rösler
,
J.
,
Harders
,
H.
, and
Bäker
,
M.
,
2019
,
Mechanisches Verhalten Der Werkstoffe
, Springer Verlag, Vol. 6, Wiesbaden, Germany, pp.
400
415
.10.1007/978-3-658-26802-2
14.
Kassner
,
M. E.
, and
Hayes
,
T. A.
,
2003
, “
Creep Cavitation in Metals
,”
Int. J. Plast.
,
19
(
10
), pp.
1715
1748
.10.1016/S0749-6419(02)00111-0
15.
Kundin
,
J.
,
Mushongera
,
L.
,
Goehler
,
T.
, and
Emmerich
,
H.
,
2012
, “
Phase-Field Modeling of the γ′-Coarsening Behavior in Ni-Based Superalloys
,”
Acta Mater.
,
60
(
9
), pp.
3758
3772
.10.1016/j.actamat.2012.03.023
16.
Maggiani
,
G.
,
Roy
,
M.
,
Colantoni
,
S.
, and
Withers
,
P.
,
2019
, “
MAR-M-247 Creep Assessment Through a Modified Theta Projection Model
,”
Materialia
,
7
, p.
100392
.10.1016/j.mtla.2019.100392
17.
Ichitsubo
,
T.
,
Koumoto
,
D.
,
Hirao
,
M.
,
Tanaka
,
K.
,
Osawa
,
M.
,
Yokokawa
,
T.
, and
Harada
,
H.
,
2003
, “
Rafting Mechanism for Ni-Base Superalloy Under External Stress: Elastic or Elastic–Plastic Phenomena?
,”
Acta Mater.
,
51
(
14
), pp.
4033
4044
.10.1016/S1359-6454(03)00224-6
18.
Nguyen
,
T. D.
,
Mäde
,
L.
, and
Kulawinski
,
D.
,
2022
, “
Simulation and Validation of Creep Damage on Grain Boundary of Polycristalline Alloy 247
,”
ASME
Paper No. GT2022-82003.10.1115/GT2022-82003
19.
Yang
,
X. G.
,
Tan
,
L.
,
Sui
,
T. X.
,
Shi
,
D. Q.
, and
Fan
,
Y. S.
,
2021
, “
Low Cycle Fatigue Behaviour of a Single Crystal Ni-Based Superalloy With a Central Hole: Effect of Inhomogeneous Rafting Microstructure
,”
Int. J. Fatigue
,
153
(
2021
), p.
106467
.10.1016/j.ijfatigue.2021.106467
20.
Tinga
,
T.
,
2006
, “
Stress Intensity Factors and Crack Propagation in a Single Crystal Nickel-Based Superalloy
,”
Eng. Fract. Mech.
,
73
(
12
), pp.
1679
1692
.10.1016/j.engfracmech.2006.02.002
21.
Scarlin
,
R.
,
1976
, “
Fatigue Crack Propagation in a Directionally-Solidified Nickel-Base Alloy
,”
Metall. Trans. A
,
7
(
10
), pp.
1535
1541
.10.1007/BF02656396
22.
Engel
,
B.
,
Beck
,
T.
,
Moch
,
N.
,
Gottschalk
,
H.
, and
Schmitz
,
S.
,
2018
, “
Effect of Local Anisotropy on Fatigue Crack Initiation in a Coarse Grained Nickel-Base Superalloy
,”
MATEC Web Conf.
,
165
, p.
04004
.10.1051/matecconf/201816504004
23.
Stanzl-Tschegg
,
S.
,
2017
, “
Fracture Mechanical Characterization of the Initiation and Growth of Interior Fatigue Cracks: Fracture Mechanics for Interior Fatigue Cracks
,”
Fatigue Fract. Eng. Mater. Struct.
,
40
(
11
), pp.
1741
1751
.10.1111/ffe.12622
24.
Kitagawa
,
H.
, and
Takahashi
,
S.
,
1976
, “
Application of Fracture Mechanics to Very Small Cracks or the Cracks in the Early Stage
,”
Proceedings of the Second International Conference on Mechanical Behavior of Materials
,
Sheraton-Boston Hotel
,
Met Park, OH,
Aug. 16–20, pp.
627
630
.
You do not currently have access to this content.