Abstract

Classical gas turbine thermodynamic cycle has undergone no change over the last decades. The most important efficiency improvements have been obtained by reducing thermal losses and raising the overall pressure ratio and peak temperature. Pressure gain combustion (PGC) represents an increasingly interesting solution to break out current technological limits. Indeed cycle models show that a pressure raise across the combustion process would reduce fuel consumption, increasing efficiency. Providing an efficiency close to the corresponding detonative technological concepts, constant volume combustion (CVC) represents a viable solution that still needs to be studied. In this work, the CV2 (constant-volume combustion vessel) installed at the Pprime laboratory (France) is numerically investigated using the high-fidelity compressible large eddy simulation (LES) solver AVBP. All the successive phases of the CVC cycle, i.e., air intake, fuel injection, spark-ignited combustion, and exhaust, are considered in the LES. Intake and exhaust valves are properly represented by novel boundary conditions able to mimic the valves impact on the flow without the need to directly consider their presence and dynamics during the simulation, reducing the computational costs. The spark ignition is modeled as an energy deposition term added to the energy equation. The combustion phase is treated by the dynamic version of the thickened flame model (DTFLES) extended to deal with nonconstant pressure combustion. Time-resolved particle imaging velocimetry (PIV) and pressure measurement inside the chamber reveal that cold and reactive turbulent flow are well captured in all the phases, showing the reliability of the approach and the models used.

References

1.
European Climate Foundation
,
2020
, “
Roadmap 2050
,” Publications Office of the European Union, Brussels, Belgium, Report No. 1.
2.
Stathopoulos
,
P.
,
2018
, “
Comprehensive Thermodynamic Analysis of the Humphrey Cycle for Gas Turbines With Pressure Gain Combustion
,”
Energies
,
11
(
12
), p.
3521
.10.3390/en11123521
3.
Heiser
,
W. H.
, and
Pratt
,
D. T.
,
2002
, “
Thermodynamic Cycle Analysis of Pulse Detonation Engines
,”
J. Propul. Power
,
18
(
1
), pp.
68
76
.10.2514/2.5899
4.
Jones
,
S. M.
, and
Paxson
,
D. E.
,
2013
, “
Potential Benefits to Commercial Propulsion Systems From Pressure Gain Combustion
,”
AIAA
Paper No. 2013–3623.10.2514/6.2013-3623
5.
Kailasanath
,
K.
,
2020
,
Recent Developments in the Research on Pressure-Gain Combustion Devices
,
Springer
,
Singapore
.
6.
Bluemner
,
R.
,
Bohon
,
M. D.
,
Paschereit
,
C. O.
, and
Gutmark
,
E. J.
,
2019
, “
Experimental Study of Reactant Mixing in Model Rotating Detonation Combustor Geometries
,”
Flow, Turbul. Combust.
,
102
(
2
), pp.
255
277
.10.1007/s10494-018-9966-7
7.
Duvall
,
J.
,
Chacon
,
F.
,
Harvey
,
C.
, and
Gamba
,
M.
,
2018
, “
Study of the Effects of Various Injection Geomteries on the Operation of a Rotating Detonation Engine
,”
AIAA
Paper No. 2018–0631.10.2514/6.2018-0631
8.
Gray
,
J. A.
,
Lemke
,
M.
,
Reiss
,
J.
,
Paschereit
,
C. O.
,
Sesterhenn
,
J.
, and
Moeck
,
J. P.
,
2017
, “
A Compact Shock-Focusing Geometry for Detonation Initiation: Experiments and Adjoint-Based Variational Data Assimilation
,”
Combust. Flame
,
183
, pp.
144
156
.10.1016/j.combustflame.2017.03.014
9.
Wolański
,
P.
,
2013
, “
Detonative Propulsion
,”
Proc. Combust. Inst.
,
34
(
1
), pp.
125
158
.10.1016/j.proci.2012.10.005
10.
Bobusch
,
B. C.
,
Berndt
,
P.
,
Paschereit
,
C. O.
, and
Klein
,
R.
,
2014
, “
Shockless Explosion Combustion: An Innovative Way of Efficient Constant Volume Combustion in Gas Turbines
,”
Combust. Sci. Technol.
,
186
(
10–11
), pp.
1680
1689
.10.1080/00102202.2014.935624
11.
Hutchins
,
T. E.
, and
Metghalchi
,
M.
,
2003
, “
Energy and Exergy Analyses of the Pulse Detonation Engine
,”
ASME J. Eng. Gas Turbines Power
,
125
(
4
), pp.
1075
1080
.10.1115/1.1610015
12.
Yücel
,
F. C.
,
Habicht
,
F.
,
Bohon
,
M. D.
, and
Paschereit
,
C. O.
,
2021
, “
Autoignition in Stratified Mixtures for Pressure Gain Combustion
,”
Proc. Combust. Inst.
,
38
(
3
), pp.
3815
3823
.10.1016/j.proci.2020.07.108
13.
Boust
,
B.
,
Michalski
,
Q.
, and
Bellenoue
,
M.
,
2016
, “
Experimental Investigation of Ignition and Combustion Processes in a Constant-Volume Combustion Chamber for Air-Breathing Propulsion
,”
AIAA
Paper No. 2016-4699.10.2514/6.2016-4699
14.
Labarrere
,
L.
,
Poinsot
,
T.
,
Dauptain
,
A.
,
Duchaine
,
F.
,
Bellenoue
,
M.
, and
Boust
,
B.
,
2016
, “
Experimental and Numerical Study of Cyclic Variations in a Constant Volume Combustion Chamber
,”
Combust. Flame
,
172
, pp.
49
61
.10.1016/j.combustflame.2016.06.027
15.
Michalski
,
Q.
,
Boust
,
B.
, and
Bellenoue
,
M.
,
2019
, “
Influence of Operating Conditions and Residual Burned Gas Properties on Cyclic Operation of Constant-Volume Combustion
,” In
Notes on Numerical Fluid Mechanics and Multidisciplinary Design
, Vol.
141
,
R.
King
, ed.,
Springer International Publishing
, Cham, Switzerland, pp.
215
233
.
16.
Michalski
,
Q.
,
Boust
,
B.
, and
Bellenoue
,
M.
,
2018
, “
Toward a Cyclic Self-Ignited Constant-Volume Combustion for Airbreathing Propulsion Applications
,”
AIAA
Paper No. 2018-4478.10.2514/6.2018-4478
17.
Michalski
,
Q.
,
Kha
,
K. Q.
,
Robin
,
V.
,
Boust
,
B.
,
Mura
,
A.
, and
Bellenoue
,
M.
,
2018
, “
Joint Numerical and Experimental Characterization of the Turbulent Reactive Flow Within a Constant Volume Vessel
,”
AIAA
Paper No. 2018-4964.10.2514/6.2018-4964
18.
Michalski
,
Q.
,
Boust
,
B.
, and
Bellenoue
,
M.
,
2019
, “
Experimental Investigation of Ignition Stability in a Cyclic Constant-Volume Combustion Chamber Featuring Relevant Conditions for Air-Breathing Propulsion
,”
Flow, Turbul. Combust.
,
102
(
2
), pp.
279
298
.10.1007/s10494-019-00015-1
19.
Tagliante
,
F.
,
Poinsot
,
T.
,
Pickett
,
L. M.
,
Pepiot
,
P.
,
Malbec
,
L. M.
,
Bruneaux
,
G.
, and
Angelberger
,
C.
,
2019
, “
A Conceptual Model of the Flame Stabilization Mechanisms for a Lifted Diesel-Type Flame Based on Direct Numerical Simulation and Experiments
,”
Combust. Flame
,
201
, pp.
65
77
.10.1016/j.combustflame.2018.12.007
20.
Enaux
,
B.
,
Granet
,
V.
,
Vermorel
,
O.
,
Lacour
,
C.
,
Pera
,
C.
,
Angelberger
,
C.
, and
Poinsot
,
T.
,
2011
, “
LES Study of Cycle-to-Cycle Variations in a Spark Ignition Engine
,”
Proc. Combust. Inst.
,
33
(
2
), pp.
3115
3122
.10.1016/j.proci.2010.07.038
21.
Xu
,
G.
,
Kotzagianni
,
M.
,
Kyrtatos
,
P.
,
Wright
,
Y. M.
, and
Boulouchos
,
K.
,
2019
, “
Experimental and Numerical Investigations of the Unscavenged Prechamber Combustion in a Rapid Compression and Expansion Machine Under Engine-Like Conditions
,”
Combust. Flame
,
204
, pp.
68
84
.10.1016/j.combustflame.2019.01.025
22.
Hasse
,
C.
,
Sohm
,
V.
, and
Durst
,
B.
,
2010
, “
Numerical Investigation of Cyclic Variations in Gasoline Engines Using a Hybrid URANS/LES Modeling Approach
,”
Comput. Fluids
,
39
(
1
), pp.
25
48
.10.1016/j.compfluid.2009.07.001
23.
Vermorel
,
O.
,
Richard
,
S.
,
Colin
,
O.
,
Angelberger
,
C.
,
Benkenida
,
A.
, and
Veynante
,
D.
,
2009
, “
Towards the Understanding of Cyclic Variability in a Spark Ignited Engine Using Multi-Cycle LES
,”
Combust. Flame
,
156
(
8
), pp.
1525
1541
.10.1016/j.combustflame.2009.04.007
24.
Granet
,
V.
,
Vermorel
,
O.
,
Lacour
,
C.
,
Enaux
,
B.
,
Dugué
,
V.
, and
Poinsot
,
T.
,
2012
, “
Large-Eddy Simulation and Experimental Study of Cycle-to-Cycle Variations of Stable and Unstable Operating Points in a Spark Ignition Engine
,”
Combust. Flame
,
159
(
4
), pp.
1562
1575
.10.1016/j.combustflame.2011.11.018
25.
Malé
,
Q.
,
Staffelbach
,
G.
,
Vermorel
,
O.
,
Misdariis
,
A.
,
Ravet
,
F.
, and
Poinsot
,
T.
,
2019
, “
Large Eddy Simulation of Pre-Chamber Ignition in an Internal Combustion Engine
,”
Flow, Turbul. Combust.
,
103
(
2
), pp.
465
483
.10.1007/s10494-019-00026-y
26.
Misdariis
,
A.
,
Vermorel
,
O.
, and
Poinsot
,
T.
,
2015
, “
A Methodology Based on Reduced Schemes to Compute Autoignition and Propagation in Internal Combustion Engines
,”
Proc. Combust. Inst.
,
35
(
3
), pp.
3001
3008
.10.1016/j.proci.2014.06.053
27.
Pouech
,
P.
,
Duchaine
,
F.
, and
Poinsot
,
T.
,
2021
, “
Premixed Flame Ignition in High-Speed Flows Over a Backward Facing Step
,”
Combust. Flame
,
229
, p.
111398
.10.1016/j.combustflame.2021.111398
28.
Poinsot
,
T.
,
2017
, “
Prediction and Control of Combustion Instabilities in Real Engines
,”
Proc. Combust. Inst.
,
36
(
1
), pp.
1
28
.10.1016/j.proci.2016.05.007
29.
Kazmouz
,
S. J.
,
Haworth
,
D. C.
,
Lillo
,
P.
, and
Sick
,
V.
,
2021
, “
Large-Eddy Simulations of a Stratified-Charge Direct-Injection Spark-Ignition Engine: Comparison With Experiment and Analysis of Cycle-to-Cycle Variations
,”
Proc. Combust. Inst.
,
38
(
4
), pp.
5849
5857
.10.1016/j.proci.2020.08.035
30.
Michalski
,
Q.
,
2019
, “
Étude expérimentale de la combustion à volume constant pour la propulsion aérobie: Influence de l'aérodynamique et de la dilution sur l'allumage et la combustion
,” Ph.D. thesis,
École Nationale Superieure De Mecanique et d'Aerotechnique
, Poitiers, France.
31.
Legier
,
J. P.
,
Poinsot
,
T.
, and
Veynante
,
D.
,
2000
, “
Dynamically Thickened Flame LES Model for Premixed and Non-Premixed Turbulent Combustion
,”
Proceedings of the Summer Program, Centre for Turbulence Research
, Standford, CA, pp.
157
168
.https://web.stanford.edu/group/ctr/ctrsp00/poinsot.pdf
32.
Colin
,
O.
, and
Rudgyard
,
M.
,
2000
, “
Development of High-Order Taylor-Galerkin Schemes for LES
,”
J. Comput. Phys.
,
162
(
2
), pp.
338
371
.10.1006/jcph.2000.6538
33.
Colin
,
O.
,
Benkenida
,
A.
, and
Angelberger
,
C.
,
2003
, “
3D Modeling of Mixing, Ignition and Combustion Phenomena in Highly Stratified Gasoline Engines
,”
Oil Gas Sci. Technol.
,
58
(
1
), pp.
47
62
.10.2516/ogst:2003004
34.
Nicoud
,
F.
, and
Ducros
,
F.
,
1999
, “
Subgrid-Scale Stress Modelling Based on the Square of the Velocity Gradient Tensor
,”
Flow, Turbul. Combust.
,
62
(
3
), pp.
183
200
.10.1023/A:1009995426001
35.
Poinsot
,
T. J.
, and
Lelef
,
S. K.
,
1992
, “
Boundary Conditions for Direct Simulations of Compressible Viscous Flows
,”
J. Comput. Phys.
,
101
(
1
), pp.
104
129
.10.1016/0021-9991(92)90046-2
36.
Shapiro
,
A. H.
,
1954
,
The Dynamics and Thermodynamics of Compressible Fluid Flow/by Ascher H. Shapiro
, Vol.
II
, Ronald Press Company, New York.
37.
Beavis
,
N. J.
,
Ibrahim
,
S. S.
, and
Malalasekera
,
W.
,
2018
, “
Numerical Evaluation of Combustion Regimes in a GDI Engine
,”
Flow, Turbul. Combust.
,
101
(
4
), pp.
1035
1057
.10.1007/s10494-018-9949-8
38.
Jamil
,
A.
,
Baharom
,
M. B.
, and
A. Aziz
,
A. R.
,
2021
, “
IC Engine in-Cylinder Cold-Flow Analysis – a Critical Review
,”
Alexandria Eng. J.
,
60
(
3
), pp.
2921
2945
.10.1016/j.aej.2021.01.040
39.
Franzelli
,
B.
,
Riber
,
E.
,
Sanjosé
,
M.
, and
Poinsot
,
T.
,
2010
, “
A Two-Step Chemical Scheme for Kerosene-Air Premixed Flames
,”
Combust. Flame
,
157
(
7
), pp.
1364
1373
.10.1016/j.combustflame.2010.03.014
40.
Ranzi
,
E.
,
Frassoldati
,
A.
,
Stagni
,
A.
,
Pelucchi
,
M.
,
Cuoci
,
A.
, and
Faravelli
,
T.
,
2014
, “
Reduced Kinetic Schemes of Complex Reaction Systems: Fossil and Biomass-Derived Transportation Fuels
,”
Int. J. Chem. Kinetics
,
46
(
9
), pp.
512
542
.10.1002/kin.20867
41.
Lacaze
,
G.
,
Richardson
,
E.
, and
Poinsot
,
T.
,
2009
, “
Large Eddy Simulation of Spark Ignition in a Turbulent Methane Jet
,”
Combust. Flame
,
156
(
10
), pp.
1993
2009
.10.1016/j.combustflame.2009.05.006
42.
Zembi
,
J.
,
Battistoni
,
M.
,
Nambully
,
S. K.
,
Pandal
,
A.
,
Mehl
,
C.
, and
Colin
,
O.
,
2022
, “
LES Investigation of Cycle-to-Cycle Variation in a SI Optical Access Engine Using TFM-AMR Combustion Model
,”
Int. J. Engine Res.
,
23
(
6
), pp.
1027
1046
.10.1177/14680874211005050
43.
Maly
,
R.
, and
Vogel
,
M.
,
1979
, “
Initiation and Propagation of Flame Fronts in Lean CH4-Air Mixtures by the Three Modes of the Ignition Spark
,”
Symp. (Int.) Combust.
,
17
(
1
), pp.
821
831
.10.1016/S0082-0784(79)80079-X
44.
Charlette
,
F.
,
Meneveau
,
C.
, and
Veynante
,
D.
,
2002
, “
A Power-Law Flame Wrinkling Model for LES of Premixed Turbulent Combustion Part I: Non-Dynamic Formulation and Initial Tests
,”
Combust. Flame
,
131
(
1–2
), pp.
159
180
.10.1016/S0010-2180(02)00400-5
45.
Labarrere
,
L.
,
2016
, “
Étude théorique et numérique de la combustion à volume constant appliquée à la propulsion
,” Ph.D. thesis,
Institut National Polytechnique de Toulouse (INP Toulouse)
, Toulouse, France.
You do not currently have access to this content.