Abstract

The micromix combustion concept offers an elegant compromise between premixed and nonpremixed combustion. By mixing the fuel and air at the smallest scale possible, one can achieve NOx emissions comparable to premixed combustion while removing the risks of auto-ignition and flashback. Current literature reports multiple micromix designs that achieve low NOx emissions (<10 ppm) with hydrogen or hydrogen-rich fuels at combustor inlet temperatures (CIT) representative of low to medium pressure ratio gas turbines (<650 K). This paper seeks to bridge the gap between current literature and the design requirements of highly recuperated ceramic gas turbines, which should allow low NOx operation with various fuels at combustor inlet temperatures upwards of 900 K. To this end, micromix injection nozzles were designed and tested at small scale to investigate the effects of fuel composition and inlet temperature on combustion stability and NOx emissions. The nozzles were additively manufactured in Inconel 625 having hundreds of holes as small as 0.25 mm. An axial swirler is used to induce recirculation of the products behind the nozzle, which helps stabilize combustion with hydrocarbon fuels due to their longer reaction times and slower flame speeds. Experimental results show that NOx emissions can be decreased down to premixed levels if the jet Damköhler number is kept under a critical value, which requires increasingly smaller holes or higher jet velocities as the inlet temperature increases. Combustion instabilities are observed at low inlet temperatures with hydrocarbons, which are also correlated to the jet Damköhler number.

References

1.
McDonald
,
C. F.
, and
Rodgers
,
C.
,
2009
, “
Heat-Exchanged Propulsion Gas Turbines: A Candidate for Future Lower SFC and Reduced-Emission Military and Civil Aeroengines
,”
ASME
Paper No. GT2009-59156.10.1115/GT2009-59156
2.
Dubois
,
P. K.
,
Landry
,
C.
,
Thibault
,
D.
,
Plante
,
J.-S.
,
Picard
,
M.
, and
Picard
,
B.
,
2022
, “
Benefits and Challenges of the Inside-Out Ceramic Turbine: An Experimental Assessment
,”
J. Propul. Power
,
38
(
2
), pp.
221
228
.10.2514/1.B38004
3.
Picard
,
B.
, Blais, A. L., Picard, M., and Rancourt, D.,
2019
, “
Power-Density vs Efficiency Trade-Off for a Recuperated Inside-Out Ceramic Turbine (ICT)
,”
ASME
Paper No. GT2019-91017.10.1115/GT2019-91017
4.
Lefebvre
,
A. H.
,
1995
, “
The Role of Fuel Preparation in Low-Emission Combustion
,”
ASME J. Eng. Gas Turbines Power
,
117
(
4
), pp.
617
654
.10.1115/1.2815449
5.
Anderson
,
D. N.
,
1981
, “
Ultra-Lean Combustion at High Inlet Temperatures
,”
ASME
Paper No. 81-GT-44.10.1115/81-GT-44
6.
Wade
,
W. R.
,
Shen
,
P. I.
,
Owens
,
C. W.
, and
McLean
,
A. F.
,
1974
, “
Low Emissions Combustion for the Regenerative Gas Turbine: Part 1—Theoretical and Design Considerations
,”
ASME J. Eng. Power
,
96
(
1
), pp.
32
48
.10.1115/1.3445746
7.
Liu
,
Y.
,
Sun
,
X.
,
Sethi
,
V.
,
Nalianda
,
D.
,
Li
,
Y.-G.
, and
Wang
,
L.
,
2017
, “
Review of Modern Low Emissions Combustion Technologies for Aero Gas Turbine Engines
,”
Prog. Aerosp. Sci.
,
94
, pp.
12
45
.10.1016/j.paerosci.2017.08.001
8.
Dahl
,
G.
, and
Suttrop
,
F.
,
1998
, “
Engine Control and low-NOx Combustion for Hydrogen Fuelled Aircraft Gas Turbines
,”
Int. J. Hydrogen Energy
,
23
(
8
), pp.
695
704
.10.1016/S0360-3199(97)00115-8
9.
Funke
,
H. H.-W.
,
Beckmann
,
N.
,
Keinz
,
J.
, and
Horikawa
,
A.
,
2021
, “
30 Years of Dry-Low-NOx Micromix Combustor Research for Hydrogen-Rich Fuels—an Overview of Past and Present Activities
,”
ASME J. Eng. Gas Turbines Power
,
143
(
7
), p.
071002
.10.1115/1.4049764
10.
Jin
,
U.
, and
Kim
,
K. T.
,
2021
, “
Experimental Investigation of Combustion Dynamics and NOx/CO Emissions From Densely Distributed Lean-Premixed Multinozzle CH4/C3H8/H2/Air Flames
,”
Combust. Flame
,
229
, p.
111410
.10.1016/j.combustflame.2021.111410
11.
Marek
,
C.
, Smith, T., and Kundu, K.,
2005
, “
Low Emission Hydrogen Combustors for Gas Turbines Using Lean Direct Injection
,”
AIAA
Paper No. AIAA–2005–3776.10.2514/6.2005-3776
12.
York
,
W. D.
,
Ziminsky
,
W. S.
, and
Yilmaz
,
E.
,
2013
, “
Development and Testing of a Low NOx Hydrogen Combustion System for Heavy-Duty Gas Turbines
,”
ASME J. Eng. Gas Turbines Power
,
135
(
2
), p. 022001.10.1115/1.4007733
13.
Weiland
,
N. T.
,
Sidwell
,
T. G.
, and
Strakey
,
P. A.
,
2013
, “
Testing of a Hydrogen Diffusion Flame Array Injector at Gas Turbine Conditions
,”
Combust. Sci. Technol.
,
185
(
7
), pp.
1132
1150
.10.1080/00102202.2013.781164
14.
Asai
,
T.
, Dodo, S., Koizumi, H., Takahashi, H., Yoshida, S., and Inoue, H.,
2011
, “
Effects of Multiple-Injection-Burner Configurations on Combustion Characteristics for Dry Low-NOx Combustion of Hydrogen-Rich Fuels
,”
ASME
Paper No. GT2011-45295.10.1115/GT2011-45295
15.
Kobayashi
,
N.
, Inoue, H., Koizumi, H., and Watanabe, T.,
2003
, “
Robust Design of the Coaxial Jet Cluster Nozzle Burner for DME (Dimethyl Ether) Fuel
,”
ASME
Paper No. GT2003-38410.10.1115/GT2003-38410
16.
Liu
,
X.
, Shao, W., Tian, Y., Liu, Y., Yu, B., Zhang, Z., and Xiao, Y.,
2018
, “
Investigation of H2/CH4-Air Flame Characteristics of a Micromix Model Burner at Atmosphere Pressure Condition
,”
ASME
Paper No. GT2018-76276.10.1115/GT2018-76276
17.
Hollon
,
B.
, Steinthorsson, E., Mansour, A., McDonell, V., and Lee, H.,
2011
, “
Ultra-Low Emission Hydrogen/Syngas Combustion With a 1.3 MW Injector Using a Micro-Mixing Lean-Premix System
,”
ASME
Paper No. GT2011-45929.10.1115/GT2011-45929
18.
Bhayaraju
,
U.
, Hamza, M., and Jeng, S-M.,
2017
, “
Development of Porous Injection Technology to Reduce Emissions for Dry Low NOx Combustors: Micromixer and Swirl Injectors
,”
ASME
Paper No. GT2017-63976.10.1115/GT2017-63976
19.
Zhang
,
Y.
,
Zhang
,
H.
,
Tian
,
L.
,
Ji
,
P.
, and
Ma
,
S.
,
2015
, “
Temperature and Emissions Characteristics of a Micro-Mixing Injection Hydrogen-Rich Syngas Flame Diluted With N2
,”
Int. J. Hydrogen Energy
,
40
(
36
), pp.
12550
12559
.10.1016/j.ijhydene.2015.07.050
20.
Kroniger
,
D.
, Horikawa, A., Funke, H.-W., Pfaeffle, F., Kishimoto, T., and Okada, O.,
2021
, “
Experimental and Numerical Investigation on the Effect of Pressure on Micromix Hydrogen Combustion
,”
ASME
Paper No. GT2021-58926.10.1115/GT2021-58926
21.
Correa
,
S. M.
,
1993
, “
A Review of NOx Formation Under Gas-Turbine Combustion Conditions
,”
Combust. Sci. Technol.
,
87
(
1–6
), pp.
329
362
.10.1080/00102209208947221
22.
Horikawa
,
A.
, Okada, K., Yamaguchi, M., Aoki, S., Wirsum, M., Funke, H. H.-W., and Kusterer, K.,
2021
, “
Combustor Development and Engine Demonstration of Micro-Mix Hydrogen Combustion Applied to M1A-17 Gas Turbine
,”
ASME
Paper No. GT2021-59666.10.1115/GT2021-59666
23.
Nicol
,
D.
, Malte, P. C., Lai, J., Marinov, N. N., Pratt, D. T., and Corr, R. A.,
1992
, “
NOx Sensitivities for Gas Turbine Engines Operated on Lean-Premixed Combustion and Conventional Diffusion Flames
,”
ASME
Paper No. 92-GT-115.10.1115/92-GT-115
24.
Hoferichter
,
V.
, Ahrens, D., Kolb, M., and Sattelmayer, T.,
2014
, “
A Reactor Model for the NOx Formation in a Reacting Jet in Hot Cross Flow Under Atmospheric and High Pressure Conditions
,”
ASME
Paper No. GT2014-26711.10.1115/GT2014-26711
25.
Broadwell
,
J. E.
,
Dahm
,
W. J.
, and
Mungal
,
M. G.
,
1985
, “
Blowout of Turbulent Diffusion Flames
,”
Symp. (Int.) Combust.
,
20
(
1
), pp.
303
310
.10.1016/S0082-0784(85)80515-4
26.
Kalghatgi
,
G. T.
,
1981
, “
Blow-Out Stability of Gaseous Jet Diffusion Flames. Part I: In Still Air
,”
Combust. Sci. Technol.
,
26
(
5–6
), pp.
233
239
.10.1080/00102208108946964
27.
Kalghatgi
,
G. T.
,
1981
, “
Blow-Out Stability of Gaseous Jet Diffusion Flames Part II: Effect of Cross Wind
,”
Combust. Sci. Technol.
,
26
(
5–6
), pp.
241
244
.10.1080/00102208108946965
28.
Bandaru
,
R. V.
, and
Turns
,
S. R.
,
2000
, “
Turbulent Jet Flames in a Crossflow: Effects of Some Jet, Crossflow, and Pilot-Flame Parameters on Emissions
,”
Combust. Flame
,
121
(
1–2
), pp.
137
151
.10.1016/S0010-2180(99)00166-2
29.
Micka
,
D. J.
, and
Driscoll
,
J. F.
,
2012
, “
Stratified Jet Flames in a Heated (1390K) Air Cross-Flow With Autoignition
,”
Combust. Flame
,
159
(
3
), pp.
1205
1214
.10.1016/j.combustflame.2011.10.013
30.
Smith
,
S. H.
, and
Mungal
,
M. G.
,
1998
, “
Mixing, Structure and Scaling of the Jet in Crossflow
,”
J. Fluid Mech.
,
357
, pp.
83
122
.10.1017/S0022112097007891
31.
Szetela
,
E. J.
, and
TeVelde
,
J. A.
,
1982
, “
Experimental Study of External Fuel Vaporization
,”
ASME
Paper No. 82-GT-59.10.1115/82-GT-59
32.
Blouch
,
J.
,
Li
,
H.
,
Mueller
,
M.
, and
Hook
,
R.
,
2011
, “
Fuel Flexibility in LM2500 and LM6000 Dry Low Emission Engines
,”
ASME
Paper No. GT2011-45387.10.1115/GT2011-45387
33.
Goodwin
,
D. G.
,
Moffat
,
H. K.
,
Schoegl
,
I.
,
Speth
,
R. L.
, and
Weber
,
B. W.
,
2022
, “
Cantera: An Object-Oriented Software Toolkit for Chemical Kinetics, Thermodynamics, and Transport Processes
,” Cantera, accessed Aug. 16, 2022, https://www.cantera.org/
34.
Ó Conaire
,
M.
,
Curran
,
H. J.
,
Simmie
,
J. M.
,
Pitz
,
W. J.
, and
Westbrook
,
C. K.
,
2004
, “
A Comprehensive Modeling Study of Hydrogen Oxidation
,”
Int. J. Chem. Kinetics
,
36
(
11
), pp.
603
622
.10.1002/kin.20036
35.
UC San Diego
,
2022
, “
Chemical-Kinetic Mechanisms for Combustion Applications
,”
Mechanical and Aerospace Engineering (Combustion Research), University of California at San Diego
, CA, accessed Aug. 16, 2022, http://web.eng.ucsd.edu/mae/groups/combustion/index.html
36.
Smith
,
G. P.
,
Golden
,
D. M.
,
Frenklach
,
M.
,
Moriarty
,
N. W.
,
Eiteneer
,
B.
,
Goldenberg
,
M.
,
Bowman
,
C. T.
,
Hanson
,
R. K.
,
Song
,
S.
,
Gardiner
,
W. C.
Jr.
,
Lissianski
,
V. V.
, and
Qin
,
Z.
,
2022
, “
Gri-Mech 3.0
,” Gri-Mech, accessed Aug. 16, 2022, http://combustion.berkeley.edu/gri-mech/
37.
Franzelli
,
B.
,
Riber
,
E.
,
Sanjosé
,
M.
, and
Poinsot
,
T.
,
2010
, “
A Two-Step Chemical Scheme for Kerosene–Air Premixed Flames
,”
Combust. Flame
,
157
(
7
), pp.
1364
1373
.10.1016/j.combustflame.2010.03.014
38.
Doerr
,
T.
,
Blomeyer
,
M.
, and
Hennecke
,
D. K.
,
1997
, “
Optimization of Multiple Jets Mixing With a Confined Crossflow
,”
ASME J. Eng. Gas Turbines Power
,
119
(
2
), pp.
315
321
.10.1115/1.2815577
39.
Weiland
,
N.
,
Chen
,
R.-H.
, and
Strakey
,
P.
,
2011
, “
Effects of Coaxial Air on Nitrogen-Diluted Hydrogen Jet Diffusion Flame Length and NOx Emission
,”
Proc. Combust. Inst.
,
33
(
2
), pp.
2983
2989
.10.1016/j.proci.2010.06.075
40.
Leonard
,
G.
, and
Stegmaier
,
J.
,
1994
, “
Development of an Aeroderivative Gas Turbine Dry Low Emissions Combustion System
,”
ASME J. Eng. Gas Turbines Power
,
116
(
3
), pp.
542
546
.10.1115/1.2906853
41.
Bovina
,
T. A.
,
1958
, “
Studies of Exchange Between Re-Circulation Zone Behind the Flame-Holder and Outer Flow
,”
Symp. Int. Combust.
,
7
(
1
), pp.
692
696
.10.1016/S0082-0784(58)80110-1
42.
Lieuwen
,
T.
,
Neumeier
,
Y.
, and
Zinn
,
B. T.
,
1998
, “
The Role of Unmixedness and Chemical Kinetics in Driving Combustion Instabilities in Lean Premixed Combustors
,”
Combust. Sci. Technol.
,
135
(
1–6
), pp.
193
211
.10.1080/00102209808924157
43.
Adamou
,
A.
,
Kennedy
,
K.
,
Farmer
,
B.
,
Hussein
,
A.
, and
Copeland
,
C.
,
2019
, “
Experimental and Computational Analysis of an Additive Manufactured Vaporization Injector for a Micro-Gas Turbine
,”
ASME
Paper No. GT2019-90245.10.1115/GT2019-90245
You do not currently have access to this content.