Abstract

The present research focuses on analyzing the feasibility of manufacturing complex turbomachinery geometries in a pre-assembled manner through an uninterrupted additive manufacturing process, absent of internal support structures, or postprocessing. In the context of the present COVID-19 pandemic, the concept is illustrated by a three-dimensional (3D)-printable turbine-driven blower-type medical ventilator, which solely relies on availability of high-pressure oxygen supply and a conventional plastic-printer. Forming a fully pre-assembled turbomachine in its final form, the architecture consists of two concentric parts, a static casing with an embedded hydrostatic bearing surrounding a rotating monolithic shell structure that includes a radial turbine mechanically driving a centrifugal blower, which in turn supplies the oxygen enriched air to the lungs of the patient. Although the component level turbomachinery design of the described architecture relies on well-established guidelines and computational fluid dynamics methods, this approach has the capability to shift the focus of additive manufacturing methods to design for pre-assembled turbomachinery systems. Upon finalizing the topology, the geometry is manufactured from polyethylene terephthalate (PETG) plastic using a simple tabletop extrusion-based machine and its performance is evaluated in a test facility. The findings of the experimental campaign are reported in terms of flow and loading coefficients and are compared with simulation results. A good agreement is observed between the two data sets, thereby fully corroborating the applied design approach and the viability of additively manufactured pre-assembled turbomachines. Eliminating long and costly processes due to presence of numerous parts, different manufacturing methods, logistics of various subcontractors, and complex assembly procedures, the proposed concept has the potential to reduce the cost of a turbomachine to capital equipment depreciation and raw material.

References

1.
Novotny
,
V.
,
Spale
,
J.
,
Stunova
,
B. B.
,
Kolovratnik
,
M.
,
Vitvarova
,
M.
, and
Zikmund
,
P.
,
2019
, “
3D Printing in Turbomachinery: Overview of Technologies, Applications and Possibilities for Industry 4.0
,”
ASME
Paper No. GT2019-91849.10.1115/GT2019-91849
2.
GE Aviation
,
2018
, “
The Blade Runners: This Factory is 3D Printing Turbine Parts for the World's Largest Jet Engine
,” GE Aviation, Cincinnati, OH, accessed Dec. 1, 2021, https://www.ge.com/news/reports/future-manufacturing-take-look-inside-factory-3d-printing-jet-engine-parts
3.
MAN Energy Solutions,
2017
, “MAN Diesel & Turbo: 3D Printing Becomes a Standard,” MAN Energy Solutions, Augsberg, Germany, accessed Dec. 1, 2021, https://brazil.man-es.com/home/news-details/2017/04/19/man-diesel-turbo-3d-printing-becomes-a-standard
4.
Grady
,
J. E.
,
2014
, “
A Fully Non-Metallic Gas Turbine Engine Enabled by Additive Manufacturing
,” NASA Glenn Research Center, Cleveland, OH, accessed Dec. 1, 2021, https://ntrs.nasa.gov/api/citations/20150002084/downloads/20150002084.pdf
5.
Grady
,
J. E.
,
2015
, “
A Fully Non‐Metallic Gas Turbine Engine Enabled by Additive Manufacturing
,” NASA Glenn Research Center, Cleveland, OH, accessed Dec. 1, 2021, https://nari.arc.nasa.gov/sites/default/files/GradySeedling.pdf
6.
Kumar
,
L. J.
, and
Krishnadas Nair
,
C. G.
,
2017
, “
Current Trends of Additive Manufacturing in the Aerospace Industry
,” D. Wimpenny, P. Pandey, and L. Kumar, eds.,
Advances in 3D Printing & Additive Manufacturing Technologies
, Springer, Singapore, pp.
39
54
.10.1007/978-981-10-0812-2_4
7.
Andrearczyk
,
A.
,
Bagiński
,
P.
, and
Klonowicz
,
P.
,
2020
, “
Numerical and Experimental Investigations of a Turbocharger With a Compressor Wheel Made of Additively Manufactured Plastic
,”
Int. J. Mech. Sci.
,
178
, p.
105613
.10.1016/j.ijmecsci.2020.105613
8.
Schurb
,
J.
,
Hoebel
,
M.
,
Haehnle
,
H.
,
Kissel
,
H.
,
Bogdanic
,
L.
, and
Etter
,
T.
,
2016
, “
Additive Manufacturing of Hot Gas Path Parts and Engine Validation in a Heavy Duty GT
,”
ASME
Paper No. GT2016-57262.10.1115/GT2016-57262
9.
Bunker
,
R. S.
,
2017
, “
Evolution of Turbine Cooling
,”
ASME
Paper No. GT2017-63205.10.1115/GT2017-63205
10.
Hanson
,
D. R.
,
McClain
,
S. T.
,
Snyder
,
J. C.
,
Kunz
,
R. F.
, and
Thole
,
K. A.
,
2019
, “
Flow in a Scaled Turbine Coolant Channel With Roughness Due to Additive Manufacturing
,”
ASME
Paper No. GT2019-90931.10.1115/GT2019-90931
11.
Gebisa
,
A. W.
, and
Lemu
,
H. G.
,
2018
, “
Additive Manufacturing for the Manufacture of Gas Turbine Engine Components: Literature Review and Future Perspectives
,”
ASME
Paper No. GT2018-76686.10.1115/GT2018-76686
12.
Novotny
,
V.
,
Vitvarova
,
M.
,
Kolovratnik
,
M.
,
Stunova
,
B. B.
,
Vodicka
,
V.
,
Spale
,
J.
,
Zikmund
,
P.
,
Drasnar
,
M.
, and
Schastlivtseva
,
E.
,
2019
, “
Design and Manufacturing of a Metal 3D Printed kW Scale Axial Turboexpander
,”
ASME
Paper No. GT2019-91822.10.1115/GT2019-91822
13.
Magerramova
,
L.
,
Volkov
,
M.
,
Svinareva
,
M.
, and
Siversky
,
A.
,
2018
, “
The Use of Additive Technologies to Create Lightweight Parts for Gas Turbine Engine Compressors
,”
ASME
Paper No. GT2018-75904.10.1115/GT2018-75904
14.
Ertas
,
B.
,
2021
, “
Additively Manufactured Compliant Hybrid Gas Thrust Bearing for sCO2 Turbomachinery: Design and Proof of Concept Testing
,”
ASME
Paper No. GT2020-14959.10.1115/GT2020-14959
15.
Pinelli
,
L.
,
Amedei
,
A.
,
Meli
,
E.
,
Vanti
,
F.
,
Romani
,
B.
,
Benvenuti
,
G.
,
Fabbrini
,
M.
,
Morganti
,
N.
,
Rindi
,
A.
, and
Arnone
,
A.
,
2022
, “
Innovative Design, Structural Optimization, and Additive Manufacturing of New-Generation Turbine Blades
,”
ASME J. Turbomach.
,
144
(
1
), p.
011006
.10.1115/1.4051936
16.
CDC
, Centers for Disease Control and Prevention, n.d., “
COVID-NET: COVID-19-Associated Hospitalization Surveillance Network
,” CDC, Atlanta, GA, accessed Dec. 1, 2021, https://gis.cdc.gov/grasp/COVIDNet/COVID19_3.html
17.
Medtronic,
2021, “
Puritan Bennett 560 (PB560) Design Specifications
,” Medtronic, Minneapolis, MN, accessed Dec. 1, 2021, https://www.medtronic.com/us-en/e/open-files.html?cmpid=vanity_url_medtronic_com_openventilator_Corp_US_Covid19_FY20
18.
3D Systems
,
2021
, “COVID-19 Call to Action,” 3D Systems, accessed Dec. 1, 2021, https://www.3dsystems.com/covid-19-response
19.
Roboze
,
2020
, “COVID-19, The Value of Collaboration and Sharing,” Roboze, Houston, TX, accessed Dec. 1, 2021, https://www.roboze.com/en/news/covid-19-the-value-of-collaboration-and-sharing.html
20.
ISINNOVA
,
2021
, “Easy COVID,” ISINNOVA, accessed Dec. 1, 2021, https://isinnova.it/archivio-progetti/easy-covid-19/
21.
AIRWOLF3D
,
2020
, “AIRWOLF3D Offering Emergency Additive Manufacturing Services,” AIRWOLF3D, Las Vegas, NV, accessed Dec. 1, 2021, https://airwolf3d.com/2020/03/17/airwolf3d-offering-emergency-additive-manufacturing-services/
22.
Fazzini
,
G.
,
Paolini
,
P.
,
Paolucci
,
R.
,
Chiulli
,
D.
,
Barile
,
G.
,
Leoni
,
A.
,
Muttillo
,
M.
,
Pantoli
,
L.
, and
Ferri
,
G.
,
2019
, “
Print on Air: FDM 3D Printing Without Supports
,”
IEEE International Workshop on Metrology 4.0 IoT, IEEE MetroInd4.0&IoT
, Naples, Italy, June 4–6, pp.
350
354
.10.1109/METROI4.2019.8792846
23.
Sassoon
,
C. S. H.
,
2011
, “
Triggering of the Ventilator in Patient-Ventilator Interactions
,”
Respir. Care
,
56
(
1
), pp.
39
51
.10.4187/respcare.01006
24.
MIT
, n.d., “
MIT Emergency Ventilator Project
,” MIT, Cambridge, MA, accessed Dec. 1, 2021, https://emergency-vent.mit.edu/
25.
Ohlsson
,
G. O.
,
1964
, “
Low Aspect Ratio Turbines
,”
J. Eng. Power
,
86
(
1
), pp.
13
16
.10.1115/1.3675408
26.
Csanady
,
G. T.
,
1964
,
Theory of Turbomachines
,
McGraw-Hill
,
New York
.
27.
Dixon
,
S. L.
, and
Hall
,
C. A.
,
2014
,
Fluid Mechanics and Thermodynamics of Turbomachinery
, 7th ed.,
Elsevier
,
Waltham, MA
.
28.
Robinson
,
C.
,
Casey
,
M.
, and
Woods
,
I.
,
2011
, “
An Integrated Approach to the Aero-Mechanical Optimisation of Turbo Compressors
,”
Current Trends in Design and Computation of Turbomachinery
, PCA Engineers Limited, Lincoln, UK.https://www.pcaeng.co.uk/library/Publications/WhitePapers/turbostroje-2011_P CA-ENG.pdf
29.
Cumpsty
,
N. A.
,
2004
,
Compressor Aerodynamics
, 2nd ed.,
Krieger Publishing
, Malabar, FL.
30.
Hildebrandt
,
A.
, and
Genrup
,
M.
,
2007
, “
Numerical Investigation of the Effect of Different Back Sweep Angle and Exducer Width on the Impeller Outlet Flow Pattern of a Centrifugal Compressor With Vaneless Diffuser
,”
ASME J. Turbomach.
,
129
(
2
), pp.
421
433
.10.1115/1.2447873
31.
Frigne
,
P.
, and
Van den Braembussche
,
R.
,
1985
, “
A Theoretical Model for Rotating Stall in the Vaneless Diffuser of a Centrifugal Compressor
,”
ASME J. Eng. Gas Turbines Power
,
107
(
2
), pp.
507
513
.10.1115/1.3239760
32.
Pakle
,
S.
, and
Jiang
,
K.
,
2021
, “
Design of a Transonic Centrifugal Compressor for High-Speed Turbomachinery
,”
Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci.
,
235
(
11
), pp.
2112
2125
.10.1177/0954406220953171
33.
Menter
,
F. R.
,
2009
, “
Review of the Shear-Stress Transport Turbulence Model Experience From an Industrial Perspective
,”
Int. J. Comut. Fluid Dyn.
,
23
(
4
), pp.
305
316
.10.1080/10618560902773387
34.
Powell
,
J. W.
,
1970
,
Design of Aerostatic Bearings
,
The Machinery Publishing
,
Brighton, UK
.
35.
Taylor
,
B. N.
, and
Kuyatt
,
C. E.
,
1994
, “Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Results,” NIST, Gaithersburg, MD, Report No. 1297.
36.
Aungier
,
R. H.
,
2000
,
Centrifugal Compressors: A Strategy for Aerodynamic Design and Analysis
,
ASME
, New York.
37.
EOS
, n.d., “Technical Data EOS M290,” EOS, Krailling, Germany, accessed Dec. 1, 2021, https://www.eos.info/03_system-related-assets/system-related-contents/_pdf_system-data-sheets/eos_system_data_sheet_eos_m_290_en.pdf
38.
GE Additive, n.d., “
Arcam EBM A2X Technical Data
,” GE Additive, Boston, MA, accessed Dec. 1, 2021, https://www.ge.com/additive/sites/default/files/2020-01/EBM_A2X_DS_EN_US_1_v1.pdf
39.
Saravanamuttoo
,
H. I. H.
,
Cohen
,
H.
,
Rogers
,
G. F. C.
,
Nix
,
A. C.
, and
Straznicky
,
P. V.
,
2017
,
Gas Turbine Theory
, 7th ed.,
Pearson
, London, UK.
You do not currently have access to this content.