Abstract

To reach net-zero while ensuring grid reliability and resiliency, gas turbine (GT) technology has a place for years to come. However, shifting to low-carbon fuels, such as hydrogen, is the key to maintain positive returns in combined cycle (CC) power plants. By recirculating a fraction of the exhaust gas exiting the heat recovery steam generator (HRSG) back to the inlet of a natural gas (NG) and hydrogen cofired GT, the gas flow passing through the compressor and entering the combustor has a reduced oxygen concentration thus lowering flame temperature, hence NOx formation. Hydrogen reactivity is then turned into a benefit since the exhaust gas recirculation (EGR) rate can be higher than that with NG, without facing flame stability issues. In light of this, a thermodynamic assessment of EGR effects on a 2 × 1 large-scale CC is presented considering GT with hydrogen capability up to 65%. The impact of partially replacing NG with hydrogen on GT behavior and overall CC performance was first evaluated at both full and part load, with no EGR. Then EGR was simulated for a rate up to 0.5 for different fuel mixtures, under the assumptions of GT inlet flow at low (ISO) and high (up to 47 °C) temperature. The analysis was again carried out at full and part load. In the latter case, EGR was exploited to improve CC efficiency at very low loads. For each scenario, CO2 emission intensity was computed thus highlighting the environmental benefits of hydrogen-NG blends.

References

1.
General Electric Company
,
2020
, “
Accelerated Growth of Renewables and Gas Power Can Rapidly Change the Trajectory on Climate Change
,”
General Electric Company
, Boston, MA, Report No. GEA34578 (11/20).
2.
International Energy Agency
,
2021
, “
Electricity Market Report
,”
IEA Publications
, Paris, France.
3.
International Energy Agency
,
2021
, “
World Energy Outlook 2021
,”
IEA Publications
, Paris, France.
4.
International Energy Agency
,
2019
, “
The Role of Gas in Today's Energy Transitions
,”
IEA Publications, Paris, France
.
5.
Bass
,
R. J.
,
Malalasekera
,
W.
,
Willmot
,
P.
, and
Versteeg
,
H. K.
,
2011
, “
The Impact of Variable Demand Upon the Performance of a Combined Cycle Gas Turbine (CCGT) Power Plant
,”
Energy
,
36
(
4
), pp.
1956
1965
.10.1016/j.energy.2010.09.020
6.
Gonzalez-Salazar
,
M. A.
,
Kirsten
,
T.
, and
Prchlik
,
L.
,
2018
, “
Review of the Operational Flexibility and Emissions of Gas-and Coal-Fired Power Plants in a Future With Growing Renewables
,”
Renewable Sustainable Energy Rev.
,
82
, pp.
1497
1513
.10.1016/j.rser.2017.05.278
7.
Hentschel
,
J.
,
Babić
,
U.
, and
Spliethoff
,
H.
,
2016
, “
A Parametric Approach for the Valuation of Power Plant Flexibility Options
,”
Energy Rep.
,
2
, pp.
40
47
.10.1016/j.egyr.2016.03.002
8.
ETN a.i.s.b.l
,
2021
, “
ETN R&D Recommendation Report
,” Brussels, Belgium.https://etn.global/wpcontent/uploads/2019/05/RD-Recommendation-Report-October-2018_March-2019-update.pdf
9.
ETN a.i.s.b.l.
,
2020
, “
Hydrogen Gas Turbines—The Path Towards a Zero-Carbon Gas Turbine
,” Brussels, Belgium.https://etn.global/wpcontent/uploads/2020/01/ETN-Hydrogen-Gas-Turbines-report.pdf
10.
Chiesa
,
P.
,
Lozza
,
G.
, and
Mazzocchi
,
L.
,
2005
, “
Using Hydrogen as Gas Turbine Fuel
,”
ASME J. Eng. Gas Turbines Power
,
127
(
1
), pp.
73
80
.10.1115/1.1787513
11.
Lin
,
Y.
,
Daniele
,
S.
,
Jansohn
,
P.
, and
Boulouchos
,
K.
,
2013
, “
Turbulent Flame Speed as an Indicator for Flashback Propensity of Hydrogen-Rich Fuel Gases
,”
ASME J. Eng. Gas Turbines Power
,
135
(
11
), p.
111503
.10.1115/1.4025068
12.
Weiland
,
N. T.
, and
Strakey
,
P. A.
,
2010
, “
NOx Reduction by Air-Side Versus Fuel-Side Dilution in Hydrogen Diffusion Flame Combustors
,”
ASME J. Eng. Gas Turbines Power
,
132
(
7
), p.
071504
.10.1115/1.4000268
13.
Gazzani
,
M.
,
Chiesa
,
P.
,
Martelli
,
E.
,
Sigali
,
S.
, and
Brunetti
,
I.
,
2014
, “
Using Hydrogen as Gas Turbine Fuel: Premixed Versus Diffusive Flame Combustors
,”
ASME J. Eng. Gas Turbines Power
,
136
(
5
), p.
051504
.10.1115/1.4026085
14.
Goldmeer
,
J.
,
2020
, ““
Hydrogen Combustion,” Special Report: The Race for 100% Hydrogen
,”
Turbomach. Int.
,
61
(
6
), pp.
14
17
.https://cdn.sanity.io/files/0vv8moc6/turbomag/bfccbf996c7c02e843e637651bb48c34a722128b.pdf/TRB_1120.pdf
15.
Noble
,
D.
,
Wu
,
D.
,
Emerson
,
B.
,
Sheppard
,
S.
,
Lieuwen
,
T.
, and
Angello
,
L.
,
2021
, “
Assessment of Current Capabilities and Near-Term Availability of Hydrogen-Fired Gas Turbines Considering a Low-Carbon Future
,”
ASME J. Eng. Gas Turbines Power
,
143
(
4
), p.
041002
.10.1115/1.4049346
16.
Petersen
,
N. H.
,
Bexten
,
T.
,
Goßrau
,
C.
, and
Wirsum
,
M.
,
2021
, “
Analysis of the Emission Reduction Potential and Combustion Stability Limits of a Hydrogen-Fired Gas Turbine With External Exhaust Gas Recirculation
,”
ASME
Paper No. GT2021-58674.10.1115/GT2021-58674
17.
Ditaranto
,
M.
,
Li
,
H.
, and
Løvås
,
T.
,
2015
, “
Concept of Hydrogen Fired Gas Turbine Cycle With Exhaust Gas Recirculation: Assessment of Combustion and Emissions Performance
,”
Int. J. Greenhouse Gas Control
,
37
, pp.
377
383
.10.1016/j.ijggc.2015.04.004
18.
ElKady
,
A. M.
,
Evulet
,
A.
,
Brand
,
A.
,
Ursin
,
T. P.
, and
Lynghjem
,
A.
,
2009
, “
Application of Exhaust Gas Recirculation in a DLN F-Class Combustion System for Postcombustion Carbon Capture
,”
ASME J. Eng. Gas Turbines Power
,
131
(
3
), p.
034505
.10.1115/1.2982158
19.
Ditaranto
,
M.
,
Heggset
,
T.
, and
Berstad
,
D.
,
2020
, “
Concept of Hydrogen Fired Gas Turbine Cycle With Exhaust Gas Recirculation: Assessment of Process Performance
,”
Energy
,
192
, p.
116646
.10.1016/j.energy.2019.116646
20.
Burnes
,
D.
,
Saxena
,
P.
, and
Dunn
,
P.
,
2020
, “
Study of Using Exhaust Gas Recirculation on a Gas Turbine for Carbon Capture
,”
ASME
Paper No. GT2020-16080.10.1115/GT2020-16080
21.
Burnes
,
D.
, and
Saxena
,
P.
,
2022
, “
Operational Scenarios of a Gas Turbine Using Exhaust Gas Recirculation for Carbon Capture
,”
ASME J. Eng. Gas Turbines Power
,
144
(
2
), p.
021011
.10.1115/1.4052266
22.
Herraiz
,
L.
,
Fernández
,
E. S.
,
Palfi
,
E.
, and
Lucquiaud
,
M.
,
2018
, “
Selective Exhaust Gas Recirculation in Combined Cycle Gas Turbine Power Plants With Post-Combustion CO2 Capture
,”
Int. J. Greenhouse Gas Control
,
71
, pp.
303
321
.10.1016/j.ijggc.2018.01.017
23.
Bexten
,
T.
,
Jörg
,
S.
,
Petersen
,
N.
,
Wirsum
,
M.
,
Liu
,
P.
, and
Li
,
Z.
,
2021
, “
Model-Based Thermodynamic Analysis of a Hydrogen-Fired Gas Turbine With External Exhaust Gas Recirculation
,”
ASME J. Eng. Gas Turbines Power
,
143
(
8
), p.
081016
.10.1115/1.4049699
24.
Hachem
,
J.
,
Schuhler
,
T.
,
Orhon
,
D.
,
Cuif-Sjostrand
,
M.
,
Zoughaib
,
A.
, and
Molière
,
M.
,
2022
, “
Exhaust Gas Recirculation Applied to Single-Shaft Gas Turbines: An Energy and Exergy Approach
,”
Energy
,
238
, p.
121656
.10.1016/j.energy.2021.121656
25.
Variny
,
M.
, and
Mierka
,
O.
,
2009
, “
Improvement of Part Load Efficiency of a Combined Cycle Power Plant Provisioning Ancillary Services
,”
Appl. Energy
,
86
(
6
), pp.
888
894
.10.1016/j.apenergy.2008.11.004
26.
Jonshagen
,
K.
,
2016
, “
Exhaust Gas Recirculation to Improve Part Load Performance on Combined Cycle Power Plants
,”
ASME
Paper No. GT2016-56229.10.1115/GT2016-56229
27.
Sammak
,
M.
,
Ho
,
C.
,
Dawood
,
A.
, and
Khalidi
,
A.
,
2021
, “
Improving Combined Cycle Part Load Performance by Using Exhaust Gas Recirculation Through an Ejector
,”
ASME
Paper No. GT2021-59358.10.1115/GT2021-59358
28.
Thermoflex
, 2020, “
Thermoflex®, Version 29
,” Thermoflow, Jacksonville, FL, accessed Sept. 1, 2021, https://www.thermoflow.com
29.
GEA32930B, 2021, “
7F Heavy Duty Gas Turbine 60 Hz, 2021, GEA32930B
,” Boston, MA, accessed Sept. 17, 2021, https://www.ge.com/content/dam/gepower-new/global/en_US/downloads/gas-new-site/products/gas-turbines/7f-fact-sheet-product-specifications.pdf
30.
Seydel
,
C. G.
,
2015
, “
Performance Influences of Hydrogen Enriched Fuel on Heavy-Duty Gas Turbines in Combined Cycle Power Plants
,”
ASME
Paper No. GT2015-42018.10.1115/GT2015-42018
31.
Evulet
,
A. T.
,
ELKady
,
A. M.
,
Branda
,
A. R.
, and
Chinn
,
D.
,
2009
, “
On the Performance and Operability of GE's Dry Low NOx Combustors Utilizing Exhaust Gas Recirculation for Postcombustion Carbon Capture
,”
Energy Procedia
,
1
(
1
), pp.
3809
3816
.10.1016/j.egypro.2009.02.182
32.
Li
,
H.
,
Ditaranto
,
M.
, and
Berstad
,
D.
,
2011
, “
Technologies for Increasing CO2 Concentration in Exhaust Gas From Natural Gas-Fired Power Production With Post-Combustion, Amine-Based CO2 Capture
,”
Energy
,
36
(
2
), pp.
1124
1133
.10.1016/j.energy.2010.11.037
33.
Li
,
H.
,
Haugen
,
G.
,
Ditaranto
,
M.
,
Berstad
,
D.
, and
Jordal
,
K.
,
2011
, “
Impacts of Exhaust Gas Recirculation (EGR) on the Natural Gas Combined Cycle Integrated With Chemical Absorption CO2 Capture Technology
,”
Energy Procedia
,
4
, pp.
1411
1418
.10.1016/j.egypro.2011.02.006
34.
Elena Diego
,
M.
,
Bellas
,
J. M.
, and
Pourkashanian
,
M.
,
2017
, “
Process Analysis of Selective Exhaust Gas Recirculation for CO2 Capture in Natural Gas Combined Cycle Power Plants Using Amines
,”
ASME J. Eng. Gas Turbines Power
,
139
(
12
), p.
121701
.10.1115/1.4037323
35.
Dillon
,
D.
,
Grace
,
D.
,
Maxson
,
A.
,
Børter
,
K.
,
Augeli
,
J. n.
,
Woodhouse
,
S. N.
, and
Aspelund
,
G.
,
2013
, “
Post-Combustion Capture on Natural Gas Combined Cycle Plants: A Technical and Economical Evaluation of Retrofit, New Build, and the Application of Exhaust Gas Recycle
,”
Energy Procedia
,
37
, pp.
2397
2405
.10.1016/j.egypro.2013.06.121
36.
Gülen
,
S. C.
,
2019
,
Gas Turbines for Electric Power Generation
,
Cambridge University Press
, Cambridge, UK.
You do not currently have access to this content.