Abstract

A step change in efficiency of gas turbine technology and, subsequently, an emissions reduction from this technology requires conceptual changes. Substituting conventional combustion chambers with pressure gain combustion in the form of pulsed detonation combustion (PDC) is one of the promising methods that can reduce gas turbine emissions significantly. Nevertheless, the component matching for the respective systems and specifically that of turbine expanders working with the exhaust flow of PDC tubes is still not solved. The unsteady nature of PDC exhaust flow makes three-dimensional-computational fluid dynamics simulations too expensive to be applied in optimization loops in early design stages. To address this question, this paper introduces a new cost-effective but reliable methodology for turbine analysis and optimization, based on the unsteady exhaust flow of pulsed detonation combustors. The methodology unitizes a robust unsteady one-dimensional solver, a meanline performance analysis, and an adaptive surrogate optimization algorithm. A two-stage axial turbine is optimized considering all unsteady flow features of a hydrogen–air PDC configuration with five PDC tubes. A three-dimensional unsteady Reynolds-averaged Navier stocks (URANS) simulation is performed for the optimized geometry and the baseline to evaluate the methodology. The results showed that the optimized turbine produces 16% lower entropy than the original one. Additionally, the turbine output power is increased by 14% by the optimized design. Based on the results, it is concluded that the approach is fast and reliable enough to be applied in optimizing any turbine working with unsteady flows, more specifically in PDC applications.

References

1.
International Energy Agency,
2021
, “
Global Energy Review 2021
,”
Global Energy Rev.
, pp.
8
31
.
2.
Stathopoulos
,
P.
,
2018
, “
Comprehensive Thermodynamic Analysis of the Humphrey Cycle for Gas Turbines With Pressure
,”
Energies
,
11
(
12
), p.
3521
.10.3390/en11123521
3.
Paxson
,
D. E.
, and
Kaemming
,
T. A.
,
2012
, “
Foundational Performance Analyses of Pressure Gain Combustion Thermodynamic Benefits for Gas Turbines
,”
AIAA
Paper No. AIAA-2012-770.10.2514/6.2012-770
4.
Stathopoulos
,
P.
,
Rähse
,
T.
,
Vinkeloe
,
J.
, and
Djordjevic
,
N.
,
2020
, “
First Law Thermodynamic Analysis of the Recuperated Humphrey Cycle for Gas Turbines With Pressure Gain Combustion
,”
Energy
,
200
(
6
), p.
117492
.10.1016/j.energy.2020.117492
5.
Glaser
,
A.
,
Caldwell
,
N.
, and
Gutmark
,
E.
,
2007
, “
Performance of an Axial Flow Turbine Driven by Multiple Pulse Detonation Combustors
,”
AIAA
Paper No. AIAA 2007-1244.10.2514/6.AIAA 2007-1244
6.
Rasheed
,
A.
,
Furman
,
A.
, and
Dean
,
A.
,
2005
, “
Experimental Investigations of an Axial Turbine Driven by a Multi-Tube Pulsed Detonation Combustor System
,”
AIAA
Paper No. AIAA 2005-4209.10.2514/6.AIAA 2005-4209
7.
Rasheed
,
A.
,
Furman
,
A. H.
, and
Dean
,
A. J.
,
2011
, “
Experimental Investigations of the Performance of a Multitube Pulse Detonation Turbine System
,”
J. Propul. Power
,
27
(
3
), pp.
586
596
.10.2514/1.B34013
8.
Anand
,
V.
,
St. George
,
A.
,
Knight
,
E.
, and
Gutmark
,
E.
,
2019
, “
Investigation of Pulse Detonation combustors - Axial Turbine System
,”
Aerosp. Sci. Technol.
,
93
(
10
), p.
105350
.10.1016/j.ast.2019.105350
9.
Fernelius
,
M. H.
, and
Gorrell
,
S. E.
,
2020
, “
Mapping Efficiency of a Pulsing Flow-Driven Turbine
,”
ASME J. Fluids Eng.
,
142
(
6
), pp.
1
8
.10.1115/1.4045993
10.
Van Zante
,
D.
,
Envia
,
E.
, and
Turner
,
M. G.
,
2007
, “
The Attenuation of a Detonation Wave by an Aircraft Engine Axial Turbine
,”
ISABE Conference
, Beijing, China, Sept. 2, pp.
1
12
.
11.
Xisto
,
C.
,
Petit
,
O.
,
Grönstedt
,
T.
,
Rolt
,
A.
,
Lundbladh
,
A.
, and
Paniagua
,
G.
,
2018
, “
The Efficiency of a Pulsed Detonation Combustor-Axial Turbine Integration
,”
Aerosp. Sci. Technol.
,
82–83
(
11
), pp.
80
91
.10.1016/j.ast.2018.08.038
12.
Cuciumita
,
C.
, and
Paschereit
,
C. O.
,
2019
, “
Numerical Performance Assessment of a Turbine Blade Row Operating Under Pulsed Detonation Combustion Inlet Conditions
,”
ASME
Paper No. GT2019-91485.10.1115/GT2019-91485
13.
Fernelius
,
M. H.
, and
Gorrell
,
S. E.
,
2021
, “
Design of a Pulsing Flow Driven Turbine
,”
ASME J. Fluids Eng., Trans. ASME
,
143
(
4
), pp.
1
9
.10.1115/1.4049114
14.
Yang
,
M.
,
Deng
,
K.
,
Martines-Botas
,
R.
, and
Zhuge
,
W.
,
2016
, “
An Investigation on Unsteadiness of a Mixed-Flow Turbine Under Pulsating Conditions
,”
Energy Convers. Manage.
,
110
, pp.
51
58
.10.1016/j.enconman.2015.12.007
15.
Taddei
,
S. R.
,
2021
, “
Time-Marching Solution of Transonic Flows at Axial Turbomachinery Meanline
,”
Proc. Inst. Mech. Eng., Part G
,
235
(
12
), pp.
1539
1550
.10.1177/0954410020977350
16.
Dittmar
,
L.
, and
Stathopoulos
,
P.
,
2020
, “
Numerical Analysis of the Stability and Operation of an Axial Compressor Connected to an Array of Pulsed Detonation Combustors
,”
ASME
Paper No. GT2020-15381.10.1115/GT2020-15381
17.
Chiong
,
M. S.
,
Rajoo
,
S.
,
Romagnoli
,
A.
,
Costall
,
A. W.
, and
Martinez-Botas
,
R. F.
,
2014
, “
Integration of Meanline and One-Dimensional Methods for Prediction of Pulsating Performance of a Turbocharger Turbine
,”
Energy Convers. Manage.
,
81
, pp.
270
281
.10.1016/j.enconman.2014.01.043
18.
Asli
,
M.
,
Garan
,
N.
,
Neumann
,
N.
, and
Stathopoulos
,
P.
,
2021
, “
A Robust One-Dimensional Approach for the Performance Evaluation of Turbines Driven by Pulsed Detonation Combustion
,”
Energy Convers. Manage.
,
248
(
11
), p.
114784
.10.1016/j.enconman.2021.114784
19.
Timko
,
L. P.
,
1984
, “
Energy Efficient Engine High Pressure Turbine Component Test Performance Report
,”
General Electric Company
,
Cincinnati, OH
, Report No. NASA-CR-168289.
20.
Berndt
,
P.
,
Klein
,
R.
, and
Paschereit
,
C. O.
,
2016
, “
A Kinetics Model for the Shockless Explosion Combustion
,”
ASME
Paper No. GT2016-57678.10.1115/GT2016-57678
21.
Aungier
,
R. H.
,
2006
,
Turbine Aerodynamics: Axial-Flow and Radial-Flow Turbine Design and Analysis
, Vol.
1
,
ASME Press
,
New York, NY
, pp.
10016
5990
.
22.
Burke
,
M. P.
,
Chaos
,
M.
,
Ju
,
Y.
,
Dryer
,
F. L.
, and
Klippenstein
,
S. J.
,
2012
, “
Comprehensive H2/O2 Kinetic Model for High-Pressure Combustion
,”
Int. J. Chem. Kinetics
,
44
(
7
), pp.
444
474
.10.1002/kin.20603
23.
Neumann
,
N.
,
Asli
,
M.
,
Garan
,
N.
,
Peitsch
,
D.
, and
Stathopoulos
,
P.
,
2021
, “
A Fast Approach for Unsteady Compressor Performance Simulation Under Boundary Condition Caused by Pressure Gain Combustion
,”
Appl. Therm. Eng.
,
196
, p.
117223
.10.1016/j.applthermaleng.2021.117223
24.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.10.2514/3.12149
25.
Asli
,
M.
,
Stathopoulos
,
P.
, and
Paschereit
,
C. O.
,
2021
, “
Aerodynamic Investigation of Guide Vane Configurations Downstream a Rotating Detonation Combustor
,”
ASME J. Eng. Gas Turbines Power
,
143
(
6
), p.
6
.10.1115/1.4049188
26.
Sousa
,
J.
,
Paniagua
,
G.
, and
Saavedra
,
J.
,
2017
, “
Aerodynamic Response of Internal Passages to Pulsating Inlet Supersonic Conditions
,”
Comput. Fluids
,
149
, pp.
31
40
.10.1016/j.compfluid.2017.03.005
27.
Celik
,
I. B.
,
Ghia
,
U.
,
Roache
,
P. J.
,
Freitas
,
C. J.
,
Coleman
,
H.
, and
Raad
,
P. E.
,
2008
, “
Procedure for Estimation and Reporting of Uncertainty Due to Discretization in CFD Applications
,”
ASME J. Fluids Eng.
,
130
(
7
), p.
078001
.10.1115/1.2960953
28.
Yondo
,
R.
,
Andrés
,
E.
, and
Valero
,
E.
,
2018
, “
A Review on Design of Experiments and Surrogate Models in Aircraft Real-Time and Many-Query Aerodynamic Analyses
,”
Prog. Aerosp. Sci.
,
96
(
1
), pp.
23
61
.10.1016/j.paerosci.2017.11.003
29.
Jin
,
Y.
,
2005
, “
A Comprehensive Survey of Fitness Approximation in Evolutionary Computation
,”
Soft Comput.
,
9
(
1
), pp.
3
12
.10.1007/s00500-003-0328-5
30.
Mongomery
,
D. C.
,
2017
,
Montgomery: Design and Analysis of Experiments
, John Willy & Sons, New York.
31.
Xu
,
H.
,
Liu
,
L.
, and
Zhang
,
M.
,
2020
, “
Adaptive Surrogate Model-Based Optimization Framework Applied to Battery Pack Design
,”
Mater. Des.
,
195
(
10
), p.
108938
.10.1016/j.matdes.2020.108938
32.
Han
,
Z.-H.
,
Zhang
,
Y.
,
Song
,
C.-X.
, and
Zhang
,
K.-S.
,
2017
, “
Weighted Gradient-Enhanced Kriging for High-Dimensional Surrogate Modeling and Design Optimization
,”
AIAA J.
,
55
(
12
), pp.
4330
4346
.10.2514/1.J055842
33.
Baert
,
L.
,
Chérière
,
E.
,
Sainvitu
,
C.
,
Lepot
,
I.
,
Nouvellon
,
A.
, and
Leonardon
,
V.
,
2020
, “
Aerodynamic Optimization of the Low-Pressure Turbine Module: Exploiting Surrogate Models in a High-Dimensional Design Space
,”
ASME J. Turbomach.
,
142
(
3
), pp.
1
11
.10.1115/1.4046232
34.
Gao
,
H. F.
,
Zio
,
E.
,
Wang
,
A.
,
Bai
,
G. C.
, and
Fei
,
C. W.
,
2020
, “
Probabilistic-Based Combined High and Low Cycle Fatigue Assessment for Turbine Blades Using a Substructure-Based Kriging Surrogate Model
,”
Aerosp. Sci. Technol.
,
104
, p.
105957
.10.1016/j.ast.2020.105957
35.
Jones
,
D. R.
,
Schonlau
,
M.
, and
Welch
,
W. J.
,
1998
, “
Efficient Global Optimization of Expensive Black-Box Functions
,”
J. Global Optim.
,
13
(
4
), pp.
455
492
.10.1023/A:1008306431147
36.
Regis
,
R. G.
, and
Shoemaker
,
C. A.
,
2007
, “
A Stochastic Radial Basis Function Method for the Global Optimization of Expensive Functions
,”
INFORMS J. Comput.
,
19
(
4
), pp.
497
509
.10.1287/ijoc.1060.0182
37.
Regis
,
R. G.
, and
Shoemaker
,
C. A.
,
2013
, “
A Quasi-Multistart Framework for Global Optimization of Expensive Functions Using Response Surface Models
,”
J. Global Optim.
,
56
(
4
), pp.
1719
1753
.10.1007/s10898-012-9940-1
38.
Bakhtiari
,
F.
, and
Schiffer
,
H.-P.
,
2019
, “
Numerical Approach to the Modelling of Transient Interaction of Prospective Combustor Concepts and Conventional High Pressure Turbines
,”
Propul. Power Res.
,
8
(
1
), pp.
1
12
.10.1016/j.jppr.2019.01.008
39.
Coull
,
J. D.
,
2017
, “
Endwall Loss in Turbine Cascades
,”
ASME J. Turbomach.
,
139
(
8
), pp.
1
12
.10.1115/1.4035663
40.
Ainley
,
D. G.
, and
Mathieson
,
C. R.
,
1951
, “
A Method of Performance Estimation for Axial-Flow Turbines
,” A.R.C. Technical Report R&M, No.
2974
.
You do not currently have access to this content.