Abstract

A comprehensive understanding of uncertainty sources in experimental measurements is required to develop robust thermochemical models for use in industrial applications. Due to the complexity of the combustion process in gas turbine engines, simpler flames are generally used to study fundamental combustion properties and measure concentrations of important species to validate and improve modeling. Stable, laminar flames have increasingly been used to study nitrogen oxide (NOx) formation in lean-to-rich compositions in low-to-high pressures to assess model predictions and improve accuracy to help develop future low-emissions systems. They allow for nonintrusive diagnostics to measure sub-ppm concentrations of pollutant molecules, as well as important precursors, and provide well-defined boundary conditions to directly compare experiments with simulations. The uncertainties of experimentally measured boundary conditions and the inherent kinetic uncertainties in the nitrogen chemistry are propagated through one-dimensional stagnation flame simulations to quantify the relative importance of the two sources and estimate their impact on predictions. Measurements in lean, stoichiometric, and rich methane–air flames are used to investigate the production pathways active in those conditions. Various spectral expansions are used to develop surrogate models with different levels of accuracy to perform the uncertainty analysis for 15 important reactions in the nitrogen chemistry and the six boundary conditions (ϕ,Tin,uin,du/dzin,Tsurf, P) simultaneously. After estimating the individual parametric contributions, the uncertainty of the boundary conditions are shown to have a relatively small impact on the prediction of NOx compared to kinetic uncertainties in these laboratory experiments. These results show that properly calibrated laminar flame experiments can, not only, provide validation targets for modeling, but also accurate indirect measurements that can later be used to infer individual kinetic rates to improve thermochemical models.

References

1.
Versailles
,
P.
,
Durocher
,
A.
,
Bourque
,
G.
, and
Bergthorson
,
J. M.
,
2019
, “
Nitric Oxide Formation in Lean, Methane-Air Stagnation Flames at Supra-Atmospheric Pressures
,”
Proc. Combust. Inst.
,
37
(
1
), pp.
711
718
.10.1016/j.proci.2018.05.060
2.
Durocher
,
A.
,
Bourque
,
G.
, and
Bergthorson
,
J. M.
,
2020
, “
Quantifying the Effect of Kinetic Uncertainties on NO Predictions at Engine–Relevant Pressures in Premixed Methane–Air Flames
,”
ASME J. Eng. Gas Turbines Power
,
142
(
6
), p.
061008
.10.1115/1.4047108
3.
Yousefian
,
S.
,
Bourque
,
G.
, and
Monaghan
,
R. F.
,
2018
, “
Uncertainty Quantification of NOx Emission Due to Operating Conditions and Chemical Kinetic Parameters in a Premixed Burner
,”
ASME J. Eng. Gas Turbines Power
,
140
(
12
), p.
121005
.10.1115/1.4040897
4.
Hong
,
Z.
,
Davidson
,
D. F.
, and
Hanson
,
R. K.
,
2011
, “
An Improved H2/O2 Mechanism Based on Recent Shock Tube/Laser Absorption Measurements
,”
Combust. Flame
,
158
(
4
), pp.
633
644
.10.1016/j.combustflame.2010.10.002
5.
Hanson
,
R. K.
,
2011
, “
Applications of Quantitative Laser Sensors to Kinetics, Propulsion and Practical Energy Systems
,”
Proc. Combust. Inst.
,
33
(
1
), pp.
1
40
.10.1016/j.proci.2010.09.007
6.
Klippenstein
,
S. J.
,
2017
, “
From Theoretical Reaction Dynamics to Chemical Modeling of Combustion
,”
Proc. Combust. Inst.
,
36
(
1
), pp.
77
111
.10.1016/j.proci.2016.07.100
7.
Sheen
,
D. A.
, and
Wang
,
H.
,
2011
, “
The Method of Uncertainty Quantification and Minimization Using Polynomial Chaos Expansions
,”
Combust. Flame
,
158
(
12
), pp.
2358
2374
.10.1016/j.combustflame.2011.05.010
8.
Frenklach
,
M.
,
Wang
,
H.
, and
Rabinowitz
,
M. J.
,
1992
, “
Optimization and Analysis of Large Chemical Kinetic Mechanisms Using the Solution Mapping Method-Combustion of Methane
,”
Prog. Energy Combust. Sci.
,
18
(
1
), pp.
47
73
.10.1016/0360-1285(92)90032-V
9.
Zsély
,
I. G.
,
Zádor
,
J.
, and
Turányi
,
T.
,
2008
, “
Uncertainty Analysis of NO Production During Methane Combustion
,”
Int. J. Chem. Kinet.
,
40
(
11
), pp.
754
768
.10.1002/kin.20373
10.
Reagan
,
M. T.
,
Najm
,
H.
,
Pebay
,
P.
,
Knio
,
O.
, and
Ghanem
,
R.
,
2005
, “
Quantifying Uncertainty in Chemical Systems Modeling
,”
Int. J. Chem. Kinet.
,
37
(
6
), pp.
368
382
.10.1002/kin.20081
11.
Najm
,
H. N.
,
Debusschere
,
B. J.
,
Marzouk
,
Y. M.
,
Widmer
,
S.
, and
Le Maître
,
O. P.
,
2009
, “
Uncertainty Quantification in Chemical Systems
,”
Int. J. Numer. Methods Eng.
,
80
(
6–7
), pp.
789
814
.10.1002/nme.2551
12.
Prager
,
J.
,
Najm
,
H. N.
,
Sargsyan
,
K.
,
Safta
,
C.
, and
Pitz
,
W. J.
,
2013
, “
Uncertainty Quantification of Reaction Mechanisms Accounting for Correlations Introduced by Rate Rules and Fitted Arrhenius Parameters
,”
Combust. Flame
,
160
(
9
), pp.
1583
1593
.10.1016/j.combustflame.2013.01.008
13.
Lipardi
,
A. C.
,
Versailles
,
P.
,
Watson
,
G. M.
,
Bourque
,
G.
, and
Bergthorson
,
J. M.
,
2017
, “
Experimental and Numerical Study on NOx Formation in CH4–Air Mixtures Diluted With Exhaust Gas Components
,”
Combust. Flame
,
179
, pp.
325
337
.10.1016/j.combustflame.2017.02.009
14.
Durocher
,
A.
,
Versailles
,
P.
,
Bourque
,
G.
, and
Bergthorson
,
J. M.
,
2020
, “
Impact of Kinetic Uncertainties on Accurate Prediction of NO Concentrations in Premixed Alkane–Air Flames
,”
Combust. Sci. Technol.
,
192
(
6
), pp.
959
985
.10.1080/00102202.2019.1604515
15.
Glarborg
,
P.
,
Miller
,
J. A.
,
Ruscic
,
B.
, and
Klippenstein
,
S. J.
,
2018
, “
Modeling Nitrogen Chemistry in Combustion
,”
Prog. Energy Combust. Sci.
,
67
, pp.
31
68
.10.1016/j.pecs.2018.01.002
16.
Abian
,
M.
,
Alzueta
,
M. U.
, and
Glarborg
,
P.
,
2015
, “
Formation of NO from N2/O2 Mixtures in a Flow Reactor: Toward an Accurate Prediction of Thermal NO
,”
Int. J. Chem. Kinet.
,
47
(
8
), pp.
518
532
.10.1002/kin.20929
17.
Thomsen
,
D. D.
,
Kuligowski
,
F. F.
, and
Laurendeau
,
N. M.
,
1999
, “
Modeling of NO Formation in Premixed, High-Pressure Methane Flames
,”
Combust. Flame
,
119
(
3
), pp.
307
318
.10.1016/S0010-2180(99)00062-0
18.
Lamoureux
,
N.
,
El Merhubi
,
H.
,
Pillier
,
L.
,
de Persis
,
S.
, and
Desgroux
,
P.
,
2016
, “
Modeling of NO Formation in Low Pressure Premixed Flames
,”
Combust. Flame
,
163
, pp.
557
575
.10.1016/j.combustflame.2015.11.007
19.
Watson
,
G. M.
,
Versailles
,
P.
, and
Bergthorson
,
J. M.
,
2016
, “
NO Formation in Premixed Flames of C1–C3 Alkanes and Alcohols
,”
Combust. Flame
,
169
, pp.
242
260
.10.1016/j.combustflame.2016.04.015
20.
Durocher
,
A.
,
Meulemans
,
M.
,
Versailles
,
P.
,
Bourque
,
G.
, and
Bergthorson
,
J. M.
,
2020
, “
Back to Basics—NO Concentration Measurements in Atmospheric Lean-to-Rich, Low-Temperature, Premixed Hydrogen–Air Flames Diluted With Argon
,”
Proc. Combust. Inst.
,
38
(
2
), pp.
2093
2100
.10.1016/j.proci.2020.06.124
21.
Rørtveit
,
G. J.
,
Hustad
,
J. E.
,
Li
,
S.-C.
, and
Williams
,
F. A.
,
2002
, “
Effects of Diluents on NOx Formation in Hydrogen Counterflow Flames
,”
Combust. Flame
,
130
(
1–2
), pp.
48
61
.10.1016/S0010-2180(02)00362-0
22.
Pillier
,
L.
,
Idir
,
M.
,
Molet
,
J.
,
Matynia
,
A.
, and
De Persis
,
S.
,
2015
, “
Experimental Study and Modelling of NOx Formation in High Pressure Counter-Flow Premixed CH4/Air Flames
,”
Fuel
,
150
, pp.
394
407
.10.1016/j.fuel.2015.01.099
23.
Versailles
,
P.
,
Watson
,
G. M.
,
Lipardi
,
A. C.
, and
Bergthorson
,
J. M.
,
2016
, “
Quantitative CH Measurements in Atmospheric-Pressure, Premixed Flames of C1–C4 Alkanes
,”
Combust. Flame
,
165
, pp.
109
124
.10.1016/j.combustflame.2015.11.001
24.
Goodwin
,
D.
,
Moffat
,
H.
, and
Speth
,
R.
,
2016
, “
Cantera: An Object-Oriented Software Toolkit for Chemical Kinetics, Thermodynamics, and Transport Processes
,” accessed Aug. 12, 2022, http://www.cantera.org
25.
UC San Diego, 2005
, “
Chemical-Kinetic Mechanisms for Combustion Applications
,” University of California at San Diego, San Diego Mechanism web page, Mechanical and Aerospace Engineering (Combustion Research), accessed Aug. 12, 2022, http://web.eng.ucsd.edu/mae/groups/combustion/index.html
26.
Versailles
,
P.
,
Watson
,
G. M.
,
Durocher
,
A.
,
Bourque
,
G.
, and
Bergthorson
,
J. M.
,
2018
, “
Thermochemical Mechanism Optimization for Accurate Predictions of CH Concentrations in Premixed Flames of C1–C3 Alkane Fuels
,”
ASME J. Eng. Gas Turbines Power
,
140
(
6
), p.
061508
.10.1115/1.4038416
27.
Xiu
,
D.
, and
Karniadakis
,
G. E.
,
2002
, “
The Wiener–Askey Polynomial Chaos for Stochastic Differential Equations
,”
SIAM J. Sci. Comput.
,
24
(
2
), pp.
619
644
.10.1137/S1064827501387826
28.
Adams
,
B.
,
Bauman
,
L.
,
Bohnhoff
,
W.
,
Dalbey
,
K.
,
Ebeida
,
M.
,
Eddy
,
J.
,
Eldred
,
M.
,
Hough
,
P.
,
Hu
,
K.
,
Jakeman
,
J.
,
Stephens
,
J.
,
Swiler
,
L.
,
Vigil
,
D.
, and
Wildey
,
T.
,
2015
, “
Dakota, a Multilevel Parallel Object-Oriented Framework for Design Optimization, Parameter Estimation, Uncertainty Quantification, and Sensitivity Analysis: Version 6.0 User's Manual
,” Sandia National Laboratories, Albuquerque, NM, Report No.
SAND2014-4633
.https://dakota.sandia.gov/sites/default/files/docs/6.0/Users-6.0.0.pdf
29.
Xiu
,
D.
,
2010
,
Numerical Methods for Stochastic Computations: A Spectral Method Approach
,
Princeton University Press
,
Princeton, NJ
.
30.
Smith
,
R. C.
,
2014
,
Uncertainty Quantification: Theory, Implementation, and Applications
, Computational Science and Engineering,
SIAM
,
Philadelphia, PA
.
31.
Smolyak
,
S.
,
1963
, “
Quadrature and Interpolation Formulas for Tensor Products of Certain Classes of Functions
,”
Dokl. Akad. Nauk
,
148
(
5
), pp.
1042
1045
.http://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=dan&paperid=27586&option_lang=eng
You do not currently have access to this content.