Abstract

Mixing controlled combustion of alcohol fuels has been identified as a promising technology based on their low propensity for particulate and NOx production, but the higher heats of vaporization and auto-ignition temperatures of these fuels make their direct use in diesel engine architectures a challenge. To realize the potential of alcohol-fueled combustion, a computational fluid dynamics (CFD) modeling framework is developed, validated, and exercised to identify designs that maximize engine thermal efficiency. To evaluate the use of thermal barrier coatings (TBCs), a simplified one-dimensional (1D) conjugate heat transfer (CHT) modeling framework is employed. The addition of the 1D CHT model only increases the computational expense by 15% relative to traditional approaches, yet offers more accurate heat transfer predictions over constant temperature boundary conditions. The validated model is then used to explore a range of injector orientations and piston bowl geometries. Using a design of experiments (DoE) approach, several designs were identified that improved fuel–air mixing, shortened the combustion duration, and increased thermal efficiency. The most promising design was fabricated and tested in a Caterpillar 1Y3700 single-cylinder oil test engine (SCOTE). Engine testing confirmed the findings from the CFD simulations and found that the co-optimized injector and piston bowl design yielded over 2-percentage point increase in thermal efficiency at the same equivalence ratio (0.96) and over 6-percentage point increase at the same engine load (10.1 bar indicated mean effective pressure (IMEP)), while satisfying design constraints for peak pressure and maximum pressure rise rate.

References

1.
Bureau of Transportation Statistics,
2015
, “
Weight of Shipment by Transportation Mode
,” U.S. Department of Transportation (USDOT), Bureau of Transportation Statistics, and USDOT, Federal Highway Administration, Freight Analysis Framework, version 4.2.
2.
Blumreiter
,
J.
,
Johnson
,
B.
,
Zhou
,
A.
,
Magnotti
,
G. M.
,
Longman
,
D. E.
, and
Som
,
S.
,
2019
, “
Mixing-Limited Combustion of Alcohol Fuels in a Diesel Engine
,”
SAE
Paper No. 2019-01-0552.10.4271/2019-01-0552
3.
Siebers
,
D. L.
, and
Edwards
,
C. F.
,
1987
, “
Autoignition of Methanol and Ethanol Sprays Under Diesel Engine Conditions
,”
SAE
Paper No. 870588.10.4271/870588
4.
Roberts
,
G.
,
Johnson
,
B.
, and
Edwards
,
C.
,
2014
, “
Prospects for High-Temperature Combustion, Neat Alcohol-Fueled Diesel Engines
,”
SAE Int. J. Engines
,
7
(
1
), pp.
448
457
.10.4271/2014-01-1194
5.
Toepel
,
R.
,
Bennethum
,
J.
, and
Heruth
,
R.
,
1983
, “
Development of Detroit Diesel Allison 6V-92TA Methanol Fueled Coach Engine
,”
SAE
Paper No. 831744.10.4271/831744
6.
Ryan
,
T. W.
,
Maymar
,
M.
,
Ott
,
D.
,
LaViolette
,
R. A.
, and
MacDowall
,
R. D.
,
1994
, “
Combustion and Emissions Characteristics of Minimally Processed Methanol in a Diesel Engine Without Ignition Assist
,”
SAE
Paper No. 940326.10.4271/940326
7.
Dhinagar
,
S.
,
Nagalingam
,
B.
, and
Gopalakrishnan
,
K.
,
1995
, “
Spark-Assisted Alcohol Operation in a Low Heat Rejection Engine
,”
SAE
Paper No. 950059.10.4271/950059
8.
Miyamoto
,
N.
,
Ogawa
,
H.
,
Nurun
,
N.
,
Obata
,
K.
, and
Arima
,
T.
,
1998
, “
Smokeless, Low NOx, High Thermal Efficiency, and Low Noise Diesel Combustion With Oxygenated Agents as Main Fuel
,”
SAE
Paper No. 980506.10.4271/980506
9.
Li
,
Y.
, and
Kong
,
S. C.
,
2011
, “
Coupling Conjugate Heat Transfer With In-Cylinder Combustion Modeling for Engine Simulation
,”
Int. J. Heat Mass Transfer
,
54
(
11–12
), pp.
2467
2478
.10.1016/j.ijheatmasstransfer.2011.02.015
10.
Iqbal
,
O.
,
Arora
,
K.
, and
Sanka
,
M.
,
2014
, “
Thermal Map of an IC Engine Via Conjugate Heat Transfer: Validation and Test Data Correlation
,”
SAE Int. J. Engines
,
7
(
1
), pp.
366
374
.10.4271/2014-01-1180
11.
Kundu
,
P.
,
Scarcelli
,
R.
,
Som
,
S.
,
Ickes
,
A.
,
Wang
,
Y.
,
Kiedaisch
,
J.
, and
Rajkumar
,
M.
,
2016
, “
Modeling Heat Loss Through Pistons and Effect of Thermal Boundary Coatings in Diesel Engine Simulations Using a Conjugate Heat Transfer Model
,”
SAE
Paper No. 2016-01-2235.10.4271/2016-01-2235
12.
Poubeau
,
A.
,
Vauvy
,
A.
,
Duffour
,
F.
,
Zaccardi
,
J.-M.
,
de Paola
,
G.
, and
Abramczuk
,
M.
,
2018
, “
Modelling Investigation of Thermal Insulation Approaches for Low Heat Rejection Diesel Engines Using a Conjugate Heat Transfer Model
,”
Int. J. Engine Res.
, 20(1), pp.
92
104
.10.1177/1468087418818264
13.
Ramírez
,
A. I.
,
Som
,
S.
,
Rutter
,
T. P.
,
Longman
,
D. E.
, and
Aggarwal
,
S. K.
,
2012
, “
Investigation of the Effects of Rate of Injection on Combustion Phasing and Emission Characteristics: Experimental and Numerical Study
,”
Spring Technical Meeting of the Central States Section of the Combustion Institute
, Dayton, OH, Apr. 22–24.
14.
Ramírez
,
A. I.
,
Aggarwal
,
S. K.
,
Som
,
S.
,
Rutter
,
T.
, and
Longman
,
D. E.
,
2014
, “
Effects of Blending a Heavy Alcohol (C20H40O) With Diesel in a Heavy-Duty Compression Ignition Engine
,”
Fuel
,
136
, pp.
89
102
.10.1016/j.fuel.2014.06.039
15.
Richards
,
K. J.
,
Senecal
,
P. K.
, and
Pomraning
,
E.
,
2019
,
CONVERGE 2.4 Manual
,
Convergent Science
,
Madison, WI
.
16.
Som
,
S.
,
Longman
,
D.
,
Aithal
,
S.
,
Bair
,
R.
,
García
,
M.
,
Quan
,
S.
,
Richards
,
K. J.
,
Senecal
,
P. K.
,
Shethaji
,
T.
, and
Weber
,
M.
,
2013
, “
A Numerical Investigation on Scalability and Grid Convergence of Internal Combustion Engine Simulations
,”
SAE
Paper No. 2013-01-1095.10.4271/2013-01-1095
17.
Reitz
,
R. D.
,
1987
, “
Modeling Atomization Processes in High-Pressure Vaporizing Sprays
,”
Atomisation Spray Technol.
,
3
, pp.
309
337
.https://www.academia.edu/11784319/Modeling_atomization_process_in_high_pressure_vaporizing_sprays
18.
Beale
,
J. C.
, and
Reitz
,
R. D.
,
1999
, “
Modeling Spray Atomization With the Kelvin-Helmholtz/Rayleigh-Taylor Hybrid Model
,”
Atomization Sprays
,
9
(
6
), pp.
623
650
.10.1615/AtomizSpr.v9.i6.40
19.
Schmidt
,
D. P.
, and
Rutland
,
C. J.
,
2000
, “
A New Droplet Collision Algorithm
,”
J. Comput. Phys.
,
164
(
1
), pp.
62
80
.10.1006/jcph.2000.6568
20.
Han
,
Z.
, and
Reitz
,
R. D.
,
1995
, “
Turbulence Modeling of Internal Combustion Engines Using RNG k-ε Models
,”
Combust. Sci. Technol.
,
106
(
4–6
), pp.
267
295
.10.1080/00102209508907782
21.
Han
,
Z.
, and
Reitz
,
R. D.
,
1997
, “
A Temperature Wall Function Formulation for Variable Density Turbulence Flow With Application to Engine Convective Heat Transfer Modeling
,”
Int. J. Heat Mass Transfer
,
40
(
3
), pp.
613
625
.10.1016/0017-9310(96)00117-2
22.
Launder
,
B.
, and
Spalding
,
D.
,
1974
, “
The Numerical Computation of Turbulent Flows
,”
Comput. Methods Appl. Mech. Eng.
,
3
(
2
), pp.
269
289
.10.1016/0045-7825(74)90029-2
23.
Wang
,
H.
,
Dempsey
,
A. B.
,
Yao
,
M.
,
Jia
,
M.
, and
Reitz
,
R. D.
,
2014
, “
Kinetic and Numerical Study on the Effects of Di-Tert-Butyl Peroxide Additive on the Reactivity of Methanol and Ethanol
,”
Energy Fuels
,
28
(
8
), pp.
5480
5488
.10.1021/ef500867p
24.
Heywood
,
J. B.
,
1988
,
Internal Combustion Engine Fundamentals
,
McGraw-Hill
, New York.
25.
Hiroyasu
,
H.
, and
Kadota
,
T.
,
1976
, “
Models for Combustion and Formation of Nitric Oxide and Soot in DI Diesel Engines
,”
SAE
Paper No. 760129.10.4271/760129
26.
Walls
,
J. R.
, and
Strickland-Constable
,
R. F.
,
1964
, “
Oxidation of Carbon Between 1000–2000 °C
,”
Carbon
, 1(3), pp. 333–338.10.1016/0008-6223(64)90288-X
27.
Pei
,
Y.
,
Pal
,
P.
,
Zhang
,
Y.
,
Traver
,
M.
,
Cleary
,
D.
,
Futterer
,
C.
,
Brenner
,
M.
,
Probst
,
D.
, and
Som
,
S.
,
2019
, “
CFD-Guided Combustion System Optimization of a Gasoline Range Fuel in a Heavy-Duty Compression Ignition Engine Using Automatic Piston Geometry Generation and a Supercomputer
,”
SAE
Paper No. 2019-01-0001.10.4271/2019-01-0001
28.
SAS Institute Inc.
,
2018
,
JMP® 14 Fitting Linear Models
,
SAS Institute
,
Cary, NC
.
29.
CAESES,
2019
, “CAESES Software,” Friendship Systems, Potsdam, Germany, accessed May 1, 2019, https://www.caeses.com/products/caeses/
30.
Taymaz
,
I.
,
2006
, “
An Experimental Study of Energy Balance in Low Heat Rejection Diesel Engine
,”
Energy
,
31
(
2–3
), pp.
364
371
.10.1016/j.energy.2005.02.004
You do not currently have access to this content.