Abstract

Plasma spray-physical vapor deposition (PS-PVD) environmental barrier coatings (EBCs) of Yb2Si2O7 were deposited on SiC and exposed in a steam environment (90% H2O/O2) at 1426 °C to form a thermally grown oxide (TGO) layer between the substrate and EBC. In advanced ceramic material systems such as coated ceramic matrix composites (CMCs), the TGO layer is the weak interface and directly influences component lifetimes. The effects of surface roughness and TGO thickness on the adhesion strength were evaluated by mechanical testing of the coatings after exposure. Morphology and oxide layer thickness were analyzed with electron microscopy while the composition and crystal structure were tracked with X-ray diffraction. The strength of the system is evaluated with respect to oxidation rate to give a qualitative understanding of coating durability.

References

1.
Doremus
,
R. H.
,
1976
, “
Oxidation of Silicon by Water and Oxygen and Diffusion in Fused Silica
,”
J. Phys. Chem.
,
80
(
16
), pp.
1773
1775
.10.1021/j100557a006
2.
Smialek
,
J. L.
,
Robinson
,
R. C.
,
Opila
,
E. J.
,
Fox
,
D. S.
, and
Jacobson
,
N. S.
,
1999
, “
SiC and Si3N4 Recession Due to SiO2 Scale Volatility Under Combustor Conditions
,”
Adv. Compos. Mater.
,
8
(
1
), pp.
33
45
.10.1163/156855199X00056
3.
Jacobson
,
N. S.
,
Fox
,
D. S.
,
Smialek
,
J. L.
,
Opila
,
E. J.
,
Dellacorte
,
C.
,
Glenn
,
N.
,
Lee
,
K. N.
, and
State
,
C.
,
2005
,
Performance of Ceramics in Severe Environments
, Vol.
5245
,
Materials Park, OH
, pp.
1
14
.
4.
Jacobson
,
N. S.
,
1993
, “
Corrosion of Silicon-Based Ceramics in Combustion Environments
,”
J. Am. Ceram. Soc.
,
76
(
1
), pp.
3
28
.10.1111/j.1151-2916.1993.tb03684.x
5.
Opila
,
E. J.
,
Smialek
,
J. L.
,
Robinson
,
R. C.
,
Fox
,
D. S.
, and
Jacobson
,
N. S.
,
1999
, “
SiC Recession Caused by SiO2 Scale Volatility Under Combustion Conditions: II, Thermodynamics and Gaseous-Diffusion Model
,”
J. Am. Ceram. Soc.
,
82
(
7
), pp.
1826
1834
.10.1111/j.1151-2916.1999.tb02005.x
6.
Lee
,
K. N.
,
Fox
,
D. S.
, and
Bansal
,
N. P.
,
2005
, “
Rare Earth Silicate Environmental Barrier Coatings for SiC/SiC Composites and Si3N4 Ceramics
,”
J. Eur. Ceram. Soc
,
25
(
10
), pp.
1705
1715
.10.1016/j.jeurceramsoc.2004.12.013
7.
Lee
,
K. N.
,
2019
, “
Yb2Si2O7 Environmental Barrier Coatings With Reduced Bond Coat Oxidation Rates Via Chemical Modifications for Long Life
,”
J. Am. Ceram. Soc.
,
102
(
3
), pp.
1507
1521
.10.1111/jace.15978
8.
Lee
,
K. N.
,
2015
, “
Environmental Barrier Coatings for CMCs
,”
Ceramic Matrix Composite
,
N. P.
Bansal
, and
J.
Lamon
, eds.,
Wiley
,
New York
, pp.
430
451
.
9.
Deal
,
B. E.
, and
Grove
,
A. S.
,
1965
, “
General Relationship for the Thermal Oxidation of Silicon
,”
J. Appl. Phys.
,
36
(
12
), pp.
3770
3778
.10.1063/1.1713945
10.
Deal
,
B. E.
, and
Sklar
,
M.
,
1965
, “
Thermal Oxidation of Heavily Doped Silicon
,”
J. Elecrochem. Soc.
,
112
(
4
), pp.
430
435
.10.1149/1.2423562
11.
Opila
,
E. J.
,
2004
, “
Variation of the Oxidation Rate of Silicon Carbide With Water-Vapor Pressure
,”
J. Am. Ceram. Soc.
,
82
(
3
), pp.
625
636
.10.1111/j.1151-2916.1999.tb01810.x
12.
Opila
,
E. J.
,
1994
, “
Oxidation Kinetics of Chemically Vapor-Deposited Silicon Carbide in Wet Oxygen
,”
J. Am. Ceram. Soc.
,
77
(
3
), pp.
730
736
.10.1111/j.1151-2916.1994.tb05357.x
13.
Arai
,
Y.
,
Aoki
,
Y.
, and
Kagawa
,
Y.
,
2017
, “
Effect of Cristobalite Formation on the Delamination Resistance of an Oxide/Si/(SiC/SiC) Environmental Barrier Coating System After Cyclic High Temperature Thermal Exposure
,”
Scr. Mater.
,
139
, pp.
58
62
.10.1016/j.scriptamat.2017.06.006
14.
Refke
,
A.
,
Gindrat
,
M.
,
Von Niessen
,
K.
, and
Damani
,
R.
,
2007
, “
LPPS Thin ilm: A Hybrid Coating Technology Between Thermal Spray and PVD for Functional Thin Coatings and Large Area Applications
,”
Proceedings of International Thermal Spray Conference
,
Beijing, China
,
May 14–16
, pp.
705
710
.https://www.asminternational.org/web/detroit-chapter/search/-/journal_content/56/10192/CP2007ITSC0705/PUBLICATION;jsessionid=4797A5F08C174E37E96FA8F10E7D30FD?p_p_id=101&p_p_lifecycle=0&p_p_state=maximized&p_p_mode=view
15.
Von Niessen
,
K.
, and
Gindrat
,
M.
,
2011
, “
Plasma Spray-PVD: A New Thermal Spray Process to Deposit Out of the Vapor Phase
,”
J. Therm. Spray Technol.
,
20
(
4
), pp.
736
743
.10.1007/s11666-011-9654-9
16.
Mauer
,
G.
,
Hospach
,
A.
,
Zotov
,
N.
, and
Vaßen
,
R.
,
2013
, “
Process Conditions and Microstructures of Ceramic Coatings by Gas Phase Deposition Based on Plasma Spraying
,”
J. Therm. Spray Technol.
,
22
(
2–3
), pp.
83
89
.10.1007/s11666-012-9838-y
17.
Hospach
,
A.
,
Mauer
,
G.
,
Vaßen
,
R.
, and
Stöver
,
D.
,
2012
, “
Characteristics of Ceramic Coatings Made by Thin Film Low Pressure Plasma Spraying (LPPS-TF)
,”
J. Therm. Spray Technol.
,
21
(
3–4
), pp.
435
440
.10.1007/s11666-012-9748-z
18.
Bakan
,
E.
,
Marcano
,
D.
,
Zhou
,
D.
,
Sohn
,
Y. J.
,
Mauer
,
G.
, and
Vaßen
,
R.
,
2017
, “
Yb2Si2O7 Environmental Barrier Coatings Deposited by Various Thermal Spray Techniques: A Preliminary Comparative Study
,”
J. Therm. Spray Technol.
,
26
(
6
), pp.
1011
1024
.10.1007/s11666-017-0574-1
19.
Schmitt
,
M. P.
,
Harder
,
B. J.
, and
Wolfe
,
D. E.
,
2016
, “
Process-Structure-Property Relations for the Erosion Durability of Plasma Spray-Physical Vapor Deposition (PS-PVD) Thermal Barrier Coatings
,”
Surf. Coat. Technol.
,
297
, pp.
11
18
.10.1016/j.surfcoat.2016.04.029
20.
Harder
,
B. J.
,
Zhu
,
D.
,
Schmitt
,
M. P.
, and
Wolfe
,
D. E.
,
2017
, “
Microstructural Effects and Properties of Non-Line-of-Sight Coating Processing Via Plasma Spray-Physical Vapor Deposition
,”
J. Therm. Spray Technol.
, 26, pp.
1052
1061
.10.1007/s11666-017-0570-5
21.
Richards
,
B. T.
,
Young
,
K. A.
,
De Francqueville
,
F.
,
Sehr
,
S.
,
Begley
,
M. R.
, and
Wadley
,
H. N. G.
,
2016
, “
Response of Ytterbium Disilicate-Silicon Environmental Barrier Coatings to Thermal Cycling in Water Vapor
,”
Acta Mater.
,
106
, pp.
1
14
.10.1016/j.actamat.2015.12.053
22.
Pabst
,
W.
, and
Gregorová
,
E. V. A.
,
2013
, “
Elastic Properties of Silica Polymorphs – A Review
,”
Ceram. Silikáty
,
57
(
3
), pp.
167
184
.https://www.researchgate.net/publication/282407023_Elastic_Properties_of_Silica_Polymorphs_-_A_Review
23.
Munro
,
R. G.
,
1997
, “
Material Properties of a Sintered Alpha-SiC
,”
J. Phys. Chem. Ref. Data
,
26
(
5
), pp.
1195
1203
.10.1063/1.556000
24.
Lee
,
K. N.
,
Fox
,
D. S.
,
Eldridge
,
J. I.
,
Zhu
,
D.
,
Robinson
,
R. C.
,
Bansal
,
N. P.
, and
Miller
,
R. A.
,
2003
, “
Upper Temperature Limit of Environmental Barrier Coatings Based on Mullite and BSAS
,”
J. Am. Ceram. Soc.
,
86
(
8
), pp.
1299
1306
.10.1111/j.1151-2916.2003.tb03466.x
25.
ASTM,
2015
, “
Standard Test Method for Through-Thickness “Flatwise,” Tensile Strength and Elastic Modulus of a Fiber-Reinforced Polymer Matrix Composite Material
,”
West Conshohocken, PA
, Standard No. ASTM D7291/D7291M-15.
26.
Kowalski
,
B.
, and
Harder
,
B.
,
2020
, “
Thermally Grown Oxide in Water Vapor on Coated and Uncoated SiC
,”
J. Am. Ceram. Soc.
,
103
(
10
), pp.
5978
5989
. 10.1111/jace.17295
27.
Sibieude
,
F.
,
Rodrìguez
,
J. R.
, and
Clavaguera
,
M. T.
,
1991
, “
Kinetics and Crystallization Studies by in Situ X-Ray Diffraction of the Oxidation of Chemically Vapour Deposited SiC
,”
Thin Solid Films
,
204
(
1
), pp.
217
227
.10.1016/0040-6090(91)90507-T
28.
Suresh
,
S.
, and
Shen
,
Y.-L.
,
1996
, “
Steady-State Creep of Metal-Ceramic Multilayered Materials
,”
Acta Mater.
,
44
(
4
), pp.
1337
1348
.10.1016/1359-6454(95)00294-4
29.
Mital
,
S. K.
,
Ricks
,
T. M.
,
Arnold
,
S. M.
, and
Harder
,
B. J.
,
2019
, “
Modeling of the Influence of a Damaged Thermally Grown Oxide (TGO) Layer in an Environmental Barrier Coating System
,”
Proceedings of the American Society for Composites
,
Atlanta, GA
,
Sept. 23–25
.10.12783/asc34/31353
30.
Peacor
,
D. R.
,
1973
, “
High-Temperature Study of the Cristobalite Inversion
,”
Z. Krist.
,
138
(
138
), pp.
274
298
.10.1524/zkri.1973.138.138.274
You do not currently have access to this content.