Abstract

Before the final experimental validation and certification of a turbo-engine, designers perform a numerical simulation of its vibratory properties, among other things, in order to estimate its lifespan and adjust the design in an optimization process. One possible practical solution to decrease the vibratory response is to add underplatform dampers to the system. These components dissipate energy by friction and are widely employed in turbomachinery. However, a specific underplatform damper is usually efficient only for a specific mode. The purpose of this work is to investigate the possibility of adding different kinds of underplatform dampers to the cyclic structure in order to decrease the vibratory energy over a larger panel of modes. Different methods exist to determine the vibrations of nonlinear cyclic symmetric systems, but creating a robust methodology to account for the additional effect of mistuning remains a big challenge in the community. In this paper, the structure is mistuned through the friction coefficient of the dampers and not by altering its geometry, as is usually done in the literature. First, assuming a cyclic symmetric structure, the performance of the dampers is assessed for specific modes. Then, employing a method recently developed, the efficiency of an intentional mistuning pattern of underplatform dampers is studied and an optimal pattern proposed.

References

1.
Gola
,
M. M.
, and
Gastaldi
,
C.
,
2014
, “
Understanding Complexities in Underplatform Damper Mechanics
,”
ASME
Paper No. GT2014-25240.10.1115/GT2014-25240
2.
Firrone
,
C.
,
Zucca
,
S.
, and
Gola
,
M.
,
2011
, “
The Effect of Underplatform Dampers on the Forced Response of Bladed Disks by a Coupled Static/Dynamic Harmonic Balance Method
,”
Int. J. Non-Linear Mech.
,
46
(
2
), pp.
363
375
.10.1016/j.ijnonlinmec.2010.10.001
3.
Petrov
,
E. P.
, and
Ewins
,
D. J.
,
2007
, “
Advanced Modeling of Underplatform Friction Dampers for Analysis of Bladed Disk Vibration
,”
ASME J. Turbomach.
,
129
(
1
), pp.
143
150
.10.1115/1.2372775
4.
Pesaresi
,
L.
,
Salles
,
L.
,
Jones
,
A.
,
Green
,
J. S.
, and
Schwingshackl
,
C. W.
,
2017
, “
Modelling the Nonlinear Behaviour of an Underplatform Damper Test Rig for Turbine Applications
,”
Mech. Syst. Signal Process.
,
85
, pp.
662
679
.10.1016/j.ymssp.2016.09.007
5.
Pesaresi
,
L.
,
Armand
,
J.
,
Schwingshackl
,
C. W.
,
Salles
,
L.
, and
Wong
,
C.
,
2018
, “
An Advanced Underplatform Damper Modelling Approach Based on a Microslip Contact Model
,”
J. Sound Vib.
,
436
, pp.
327
340
.10.1016/j.jsv.2018.08.014
6.
Gastaldi
,
C.
, and
Gola
,
M. M.
, “
Platform Centered Reduction: A Process Capturing the Essentials for Blade-Damper Coupled Optimization
,”
ASME J. Eng. Gas Turbines Power
, 143(8), p. 081001.10.1115/1.4049187
7.
He
,
B.
,
Ouyang
,
H.
,
Ren
,
X.
, and
He
,
S.
,
2017
, “
Dynamic Response of a Simplified Turbine Blade Model With Under-Platform Dry Friction Dampers Considering Normal Load Variation
,”
Appl. Sci.
,
7
(
3
), p.
228
.10.3390/app7030228
8.
Schwingshackl
,
C. W.
,
Petrov
,
E. P.
, and
Ewins
,
D. J.
,
2012
, “
Effects of Contact Interface Parameters on Vibration of Turbine Bladed Disks With Underplatform Dampers
,”
ASME J. Eng. Gas Turbines Power
,
134
(
3
), p. 032507.10.1115/1.4004721
9.
Panning
,
L.
,
Sextro
,
W.
, and
Popp
,
K.
,
2003
, “
Spatial Dynamics of Tuned and Mistuned Bladed Disks With Cylindrical and Wedge-Shaped Friction Dampers
,”
Int. J. Rotating Mach.,
9
(
3
), pp.
219
228
.10.1080/10236210390147308
10.
MacNeal
,
R. H.
,
1973
, “
NASTRAN Cyclic Symmetry Capability. [Application to Solid Rocket Propellant Grains and Space Antennas]
,”.
11.
Thomas
,
D. L.
,
1979
, “
Dynamics of Rotationally Periodic Structures
,”
Int. J. Numer. Methods Eng.
,
14
(
1
), pp.
81
102
.10.1002/nme.1620140107
12.
Mitra
,
M.
, and
Epureanu
,
B. I.
,
2019
, “
Dynamic Modeling and Projection-Based Reduction Methods for Bladed Disks With Nonlinear Frictional and Intermittent Contact Interfaces
,”
ASME Appl. Mech. Rev.
,
71
(
5
), p. 050803.10.1115/1.4043083
13.
Petrov
,
E. P.
,
2004
, “
A Method for Use of Cyclic Symmetry Properties in Analysis of Nonlinear Multiharmonic Vibrations of Bladed Disks
,”
ASME J. Turbomach.
,
126
(
1
), pp.
175
183
.10.1115/1.1644558
14.
Quaegebeur
,
S.
,
Chouvion
,
B.
, and
Thouverez
,
F.
,
2020
, “
Model Reduction of Nonlinear Cyclic Structures Based on Their Cyclic Symmetric Properties
,”
Mech. Syst. Signal Process.
,
145
, p.
106970
.10.1016/j.ymssp.2020.106970
15.
Castanier
,
M. P.
, and
Pierre
,
C.
,
2006
, “
Modeling and Analysis of Mistuned Bladed Disk Vibration: Status and Emerging Directions
,”
J. Propuls. Power
, 22, pp.
384
396
.10.2514/1.16345
16.
Lim
,
S.-H.
,
Bladh
,
R.
,
Castanier
,
M. P.
, and
Pierre
,
C.
,
2007
, “
Compact, Generalized Component Mode Mistuning Representation for Modeling Bladed Disk Vibration
,”
AIAA J.
,
45
(
9
), pp.
2285
2298
.10.2514/1.13172
17.
Vargiu
,
P.
,
Firrone
,
C. M.
,
Zucca
,
S.
, and
Gola
,
M. M.
,
2011
, “
A Reduced Order Model Based on Sector Mistuning for the Dynamic Analysis of Mistuned Bladed Disks
,”
Int. J. Mech. Sci.
,
53
(
8
), pp.
639
646
.10.1016/j.ijmecsci.2011.05.010
18.
Madden
,
A.
,
Epureanu
,
B. I.
, and
Filippi
,
S.
,
2012
, “
Reduced-Order Modeling Approach for Blisks With Large Mass, Stiffness, and Geometric Mistuning
,”
AIAA J.
,
50
(
2
), pp.
366
374
.10.2514/1.J051140
19.
Schwerdt
,
L.
,
Panning-von Scheidt
,
L.
, and
W
,
J.
,
2020
, “
A Model Reduction Method for Blade Disks With Large Geometric Mistuning Using Partial Reduced Intermediate System Model
,”
ASME
Paper No. GTP-20-1571.10.1115/1.4049357
20.
Tang
,
W.
,
Baek
,
S.
, and
Epureanu
,
B. I.
,
2017
, “
Reduced-Order Models for Blisks With Small and Large Mistuning and Friction Dampers
,”
ASME J. Eng. Gas Turbines Power
,
139
(
1
), p. 012507.10.1115/1.4034212
21.
Pourkiaee
,
S. M.
, and
Zucca
,
S.
,
2019
, “
A Reduced Order Model for Nonlinear Dynamics of Mistuned Bladed Disks With Shroud Friction Contacts
,”
ASME J. Eng. Gas Turbines Power
,
141
(
1
), p. 011031.10.1115/1.4041653
22.
Mashayekhi
,
F.
,
Nobari
,
A. S.
, and
Zucca
,
S.
,
2019
, “
Hybrid Reduction of Mistuned Bladed Disks for Nonlinear Forced Response Analysis With Dry Friction
,”
Int. J. Non-Linear Mech.
,
116
, pp.
73
84
.10.1016/j.ijnonlinmec.2019.06.001
23.
Joannin
,
C.
,
Chouvion
,
B.
,
Thouverez
,
F.
,
Ousty
,
J.-P.
, and
Mbaye
,
M.
,
2017
, “
A Nonlinear Component Mode Synthesis Method for the Computation of Steady-State Vibrations in Non-Conservative Systems
,”
Mech. Syst. Signal Process.
,
83
, pp.
75
92
.10.1016/j.ymssp.2016.05.044
24.
Quaegebeur
,
S.
,
Chouvion
,
B.
, and
Thouverez
,
F.
,
2021
, “
Nonlinear Cyclic Reduction for the Analysis of Mistuned Cyclic Systems
,”
J. Sound Vib.
,
499
, p.
116002
.10.1016/j.jsv.2021.116002
25.
Tang
,
W.
, and
Epureanu
,
B. I.
,
2019
, “
Geometric Optimization of Dry Friction Ring Dampers
,”
Int. J. Non-Linear Mech.
,
109
, pp.
40
49
.10.1016/j.ijnonlinmec.2018.11.001
26.
Craig
,
R. R.
, and
Bampton
,
M. C. C.
,
1968
, “
Coupling of Substructures for Dynamic Analyses
,”
AIAA J.
,
6
(
7
), pp.
1313
1319
.10.2514/3.4741
27.
Krack
,
M.
,
Tatzko
,
S.
,
Panning-von Scheidt
,
L.
, and
Wallaschek
,
J.
,
2014
, “
Reliability Optimization of Friction-Damped Systems Using Nonlinear Modes
,”
J. Sound Vib.
,
333
(
13
), pp.
2699
2712
.10.1016/j.jsv.2014.02.008
28.
Krack
,
M.
,
Salles
,
L.
, and
Thouverez
,
F.
,
2017
, “
Vibration Prediction of Bladed Disks Coupled by Friction Joints
,”
Arch. Comput. Methods Eng.
,
24
(
3
), pp.
589
636
.10.1007/s11831-016-9183-2
29.
Nacivet
,
S.
,
Pierre
,
C.
,
Thouverez
,
F.
, and
Jézéquel
,
L.
,
2003
, “
A Dynamic Lagrangian Frequency-Time Method for the Vibration of Dry-Friction-Damped Systems
,”
J. Sound Vib.
,
265
(
1
), pp.
201
219
.10.1016/S0022-460X(02)01447-5
30.
Poudou
,
O.
, and
Pierre
,
C.
,
2003
, “
Hybrid Frequency-Time Domain Methods for the Analysis of Complex Structural Systems With Dry Friction Damping
,”
AIAA
Paper No. 2003-1411.10.2514/6.2003-1411
31.
Cameron
,
T. M.
, and
Griffin
,
J. H.
,
1989
, “
An Alternating Frequency/Time Domain Method for Calculating the Steady-State Response of Nonlinear Dynamic Systems
,”
ASME J. Appl. Mech.
,
56
(
1
), pp.
149
154
.10.1115/1.3176036
32.
Tran
,
D.-M.
,
2009
, “
Component Mode Synthesis Methods Using Partial Interface Modes: Application to Tuned and Mistuned Structures With Cyclic Symmetry
,”
Comput. Struct.
,
87
(
17–18
), pp.
1141
1153
.10.1016/j.compstruc.2009.04.009
33.
Han
,
Y.
,
Murthy
,
R.
,
Mignolet
,
M. P.
, and
Lentz
,
J.
,
2014
, “
Optimization of Intentional Mistuning Patterns for the Mitigation of the Effects of Random Mistuning
,”
ASME J. Eng. Gas Turbines Power
,
136
(
6
), p. 062505.10.1115/1.4026141
34.
Choi
,
B.-K.
,
Lentz
,
J.
,
Rivas-Guerra
,
A. J.
, and
Mignolet
,
M. P.
,
2003
, “
Optimization of Intentional Mistuning Patterns for the Reduction of the Forced Response Effects of Unintentional Mistuning: Formulation and Assessment
,”
ASME J. Eng. Gas Turbines Power
,
125
(
1
), pp.
131
140
.10.1115/1.1498270
35.
Rivas-Guerra
,
A. J.
, and
Mignolet
,
M. P.
,
2004
, “
Local/Global Effects of Mistuning on the Forced Response of Bladed Disks
,”
ASME J. Eng. Gas Turbines Power
,
126
(
1
), pp.
131
141
.10.1115/1.1581898
36.
Mbaye
,
M.
,
2009
, “
Conception robuste en vibration et aéroélasticité des roues aubagées de turbomachines
,” These de doctorat,
Université Paris-Est. Français. ⟨NNT: 2009PEST1068⟩.
37.
Martel
,
C.
,
Corral
,
R.
, and
Llorens
,
J. M.
,
2008
, “
Stability Increase of Aerodynamically Unstable Rotors Using Intentional Mistuning
,”
ASME J. Turbomach.
,
130
(
1
), p. 011006.10.1115/1.2720503
38.
Biagiotti
,
S.
,
Pinelli
,
L.
,
Poli
,
F.
,
Vanti
,
F.
, and
Pacciani
,
R.
,
2018
, “
Numerical Study of Flutter Stabilization in Low Pressure Turbine Rotor With Intentional Mistuning
,”
Energy Procedia
,
148
, pp.
98
105
.10.1016/j.egypro.2018.08.035
39.
Gastaldi
,
C.
,
Berruti
,
T. M.
,
Gola
,
M. M.
, and
Bessone
,
A.
,
2019
, “
Experimental Investigation on Real Under-Platform Dampers: The Impact of Design and Manufacturing
,”
ASME
Paper No. GT2019-90416.10.1115/GT2019-90416
You do not currently have access to this content.