Abstract

Pressurized solid oxide fuel cell (SOFC) systems are one of the most promising technologies to achieve high energy conversion efficiencies and reduce pollutant emissions. The most common solution for pressurization is the integration with a microgas turbine, a device capable of exploiting the residual energy of the exhaust gas to compress the fuel cell air intake and, at the same time, generating additional electrical power. The focus of this study is on an alternative layout, based on an automotive turbocharger, which has been more recently considered by the research community to improve cost effectiveness at a small size (<100 kW), despite reducing slightly the top achievable performance. Such a turbocharged SOFC system poses two main challenges. On one side, the absence of an electrical generator does not allow direct control of the rotational speed, which is determined by the power balance between turbine and compressor. On the other side, the presence of a large volume between compressor and turbine, due to the fuel cell stack, alters the dynamic behavior of the turbocharger during transients, increasing the risk of compressor surge. The pressure oscillations associated with such event are particularly detrimental for the system because they could easily damage the materials of the fuel cells. This paper aims is to investigate different techniques to drive the operative point of the compressor far from the surge condition when needed, reducing the risks related to transients and increasing its reliability. By means of a system dynamic model, developed using the transeo simulation tool by Thermochemical Power Group (TPG), the effect of different antisurge solutions is simulated: (i) intake air conditioning, (ii) water spray at compressor inlet, (iii) air bleed and recirculation, and (iv) installation of an ejector at the compressor intake. The pressurized fuel cell system is simulated with two different control strategies, i.e., constant fuel mass flow and constant turbine inlet temperature. Different solutions are evaluated based on surge margin behavior, both in the short and long terms, but also monitoring other relevant physical quantities of the system, such as compressor pressure ratio and turbocharger rotational speed.

References

1.
Manabe
,
S.
,
2019
, “
Role of Greenhouse Gas in Climate Change**
,”
Tellus A Dyn. Meteorol. Oceanogr.
,
71
(
1
), p.
1620078
.10.1080/16000870.2019.1620078
2.
Blunden
,
J.
,
Arndt
,
D. S.
,
Hartfield
,
G.
,
Weyhenmeyer
,
G. A.
, and
Ziese
,
M. G.
,
2018
, “State of the Climate in 2017,”
Bull. Am. Meteorol. Soc.
, 99(8), pp. Si–S310.https://www.ametsoc.net/sotc2017/StateoftheClimate2017_lowres.pdf
3.
Wright
,
L. P.
,
Zhang
,
L.
,
Cheng
,
I.
,
Aherne
,
J.
, and
Wentworth
,
G. R.
,
2018
, “
Impacts and Effects Indicators of Atmospheric Deposition of Major Pollutants to Various Ecosystems-A Review
,”
Aerosol Air Qual. Res.
,
18
(
8
), pp.
1953
1992
.10.4209/aaqr.2018.03.0107
4.
European Commission
,
2019
, “
The European Green Deal
,” Communication from the Commission, Bruxelles, Belgium.https://eur-lex.europa.eu/legal-content/EN/TXT/?qid=1588580774040&uri=CELEX:52019DC0640
5.
Bellotti
,
D.
,
Rivarolo
,
M.
,
Magistri
,
L.
, and
Massardo
,
A. F.
,
2015
, “
Thermo-Economic Comparison of Hydrogen and Hydro-Methane Produced From Hydroelectric Energy for Land Transportation
,”
Int. J. Hydrogen Energy
,
40
(
6
), pp.
2433
2444
.10.1016/j.ijhydene.2014.12.066
6.
Mantelli
,
L.
,
Ferrari
,
M. L. L.
, and
Magistri
,
L.
,
2021
, “
Off-Design Performance Analysis of a Turbocharged Solid Oxide Fuel Cell System
,”
Appl. Therm. Eng.
,
183
, p.
116134
.10.1016/j.applthermaleng.2020.116134
7.
Bellotti
,
D.
,
Cassettari
,
L.
,
Mosca
,
M.
, and
Magistri
,
L.
,
2019
, “
RSM Approach for Stochastic Sensitivity Analysis of the Economic Sustainability of a Methanol Production Plant Using Renewable Energy Sources
,”
J. Clean. Prod
.,
240
, p. 117947.10.1016/j.jclepro.2019.117947
8.
Choudhury
,
A.
,
Chandra
,
H.
, and
Arora
,
A.
,
2013
, “
Application of Solid Oxide Fuel Cell Technology for Power Generation—A Review
,”
Renewable Sustainable Energy Rev.
, 20, pp.
430
442
.10.1016/j.rser.2012.11.031
9.
Mekhilef
,
S.
,
Saidur
,
R.
, and
Safari
,
A.
,
2012
, “
Comparative Study of Different Fuel Cell Technologies
,”
Renew. Sustain. Energy Rev.
, 16(1), pp.
981
989
.10.1016/j.rser.2011.09.020
10.
Zhang
,
X.
,
Chan
,
S. H.
,
Li
,
G.
,
Ho
,
H. K.
,
Li
,
J.
, and
Feng
,
Z.
,
2010
, “
A Review of Integration Strategies for Solid Oxide Fuel Cells
,”
J. Power Sources
,
195
(
3
), pp.
685
702
.10.1016/j.jpowsour.2009.07.045
11.
Henke
,
M.
,
Kallo
,
J.
,
Friedrich
,
K. A.
, and
Bessler
,
W. G.
,
2011
, “
Influence of Pressurisation on SOFC Performance and Durability: A Theoretical Study
,”
Fuel Cells
,
11
(
4
), pp.
581
591
.10.1002/fuce.201000098
12.
Massardo
,
A. F.
, and
Magistri
,
L.
,
2003
, “
Internal Reforming Solid Oxide Fuel Cell Gas Turbine Combined Cycles (IRSOFC-GT)-Part II: Exergy and Thermoeconomic Analyses
,”
ASME J. Eng. Gas Turbines Power
,
125
(
1
), pp.
67
74
.10.1115/1.1492837
13.
Rajashekara
,
K.
,
2004
, “
Hybrid Fuel Cell Strategies for Clean Power Generation
,” Conference Record—IAS Annual Meeting, (
IEEE Industry Applications Society
), Seattle, WA, Oct. 3–7, Vol. 3, pp.
2077
2083
.10.1109/TIA.2005.847293
14.
Hauptmeier
,
K.
,
Penkuhn
,
M.
, and
Tsatsaronis
,
G.
,
2016
, “
Economic Assessment of a Solid Oxide Fuel Cell System for Biogas Utilization in Sewage Plants
,”
Energy
,
117
, pp.
361
368
.10.1016/j.energy.2016.05.072
15.
Oh
,
S. R.
,
Sun
,
J.
,
Dobbs
,
H.
, and
King
,
J.
,
2011
, “
Performance Evaluation of Solid Oxide Fuel Cell Engines Integrated With Single/Dual-Spool Turbochargers
,”
ASME J. Fuel Cell Sci. Technol.
,
8
(
6
), p.
061020
.10.1115/1.4004471
16.
Lee
,
K.
,
Kang
,
S.
, and
Ahn
,
K. Y.
,
2017
, “
Development of a Highly Efficient Solid Oxide Fuel Cell System
,”
Appl. Energy
,
205
, pp.
822
833
.10.1016/j.apenergy.2017.08.070
17.
Visser
,
W. P. J.
,
Shakariyants
,
S. A.
, and
Oostveen
,
M.
,
2011
, “
Development of a 3 KW Microturbine for CHP Applications
,”
ASME J. Eng. Gas Turbines Power
,
133
(
4
), p.
042301
.10.1115/1.4002156
19.
Bao
,
C.
,
Wang
,
Y.
,
Feng
,
D.
,
Jiang
,
Z.
, and
Zhang
,
X.
,
2018
, “
Macroscopic Modeling of Solid Oxide Fuel Cell (SOFC) and Model-Based Control of SOFC and Gas Turbine Hybrid System
,”
Prog. Energy Combust. Sci.
,
66
, pp.
83
140
.10.1016/j.pecs.2017.12.002
20.
Giugno
,
A.
,
Mantelli
,
L.
,
Cuneo
,
A.
, and
Traverso
,
A.
,
2020
, “
Performance Analysis of a Fuel Cell Hybrid System Subject to Technological Uncertainties
,”
Appl. Energy
,
279
, p.
115785
.10.1016/j.apenergy.2020.115785
21.
Tucker
,
D.
,
Shadle
,
L.
,
Harun
,
N. F.
, and
Farida Harun
,
N.
,
2017
, “
Automated Compressor Surge Recovery With Cold Air Bypass in Gas Turbine Based Hybrid Systems
,”
International Symposium on Transport Phenomena and Dynamics of Rotating Machinery
, Maui, HI, Dec. 16–21, pp.
1
5
.http://isromac-isimet.univ-lille1.fr/upload_dir/finalpaper17/179.finalpaper.pdf
22.
Willems
,
F.
, and
de Jager
,
B.
,
1998
, “
Active Compressor Surge Control Using a One-Sided Controlled Bleed/Recycle Valve
,”
Proc. IEEE Conf. Decis. Control
, 3, pp.
2546
2551
.10.1109/CDC.1998.757834
23.
Kurz
,
R.
, and
White
,
R. C.
,
2004
, “
Surge Avoidance in Gas Compression Systems
,”
ASME J. Turbomach.
,
126
(
4
), pp.
501
506
.10.1115/1.1777577
24.
Gancedo
,
M.
,
Guillou
,
E.
, and
Gutmark
,
E.
,
2018
, “
Effect of Bleed Slots on Turbocharger Centrifugal Compressor Stability
,”
Int. J. Heat Fluid Flow
,
70
, pp.
206
215
.10.1016/j.ijheatfluidflow.2017.12.007
25.
Galindo
,
J.
,
Serrano
,
J. R.
,
Margot
,
X.
,
Tiseira
,
A.
,
Schorn
,
N.
, and
Kindl
,
H.
,
2007
, “
Potential of Flow Pre-Whirl at the Compressor Inlet of Automotive Engine Turbochargers to Enlarge Surge Margin and Overcome Packaging Limitations
,”
Int. J. Heat Fluid Flow
,
28
(
3
), pp.
374
387
.10.1016/j.ijheatfluidflow.2006.06.002
26.
Sayed Hassan
,
A.
,
2007
, “
Modeling of a Turbocharger With the Diesel Engine and Control of Compressor Surge
,”
JES. J. Eng. Sci.
, 35(1), pp.
93
116
.10.21608/JESAUN.2007.111423
27.
Han
,
J.
,
Yu
,
S.
, and
Yi
,
S.
,
2017
, “
Adaptive Control for Robust Air Flow Management in an Automotive Fuel Cell System
,”
Appl. Energy
,
190
, pp.
73
83
.10.1016/j.apenergy.2016.12.115
28.
Marelli
,
S.
,
Misley
,
A.
,
Taylor
,
A.
,
Silviestri
,
P.
,
Capobianco
,
M.
, and
Canova
,
M.
,
2018
, “
Experimental Investigation on Surge Phenomena in an Automotive Turbocharger Compressor
,”
SAE
Paper No. 2018-01-0976.10.4271/2018-01-0976
29.
Liśkiewicz
,
G.
,
Horodko
,
L.
,
Stickland
,
M.
, and
Kryłłowicz
,
W.
,
2014
, “
Identification of Phenomena Preceding Blower Surge by Means of Pressure Spectral Maps
,”
Exp. Therm. Fluid Sci.
,
54
, pp.
267
278
.10.1016/j.expthermflusci.2014.01.002
30.
Ferrari
,
M. L.
,
Silvestri
,
P.
,
Reggio
,
F.
, and
Massardo
,
A. F.
,
2018
, “
Surge Prevention for Gas Turbines Connected With Large Volume Size: Experimental Demonstration With a Microturbine
,”
Appl. Energy
,
230
, pp.
1057
1064
.10.1016/j.apenergy.2018.09.075
31.
Munari
,
E.
,
D'Elia
,
G.
,
Morini
,
M.
,
Mucchi
,
E.
,
Pinelli
,
M.
, and
Spina
,
P. R.
,
2018
, “
Experimental Investigation of Vibrational and Acoustic Phenomena for Detecting the Stall and Surge of a Multistage Compressor
,”
ASME J. Eng. Gas Turbines Power
,
140
(
9
), p.
092605
.10.1115/1.4038765
32.
Mitsubishi Power
,
2021
, “
Fuel Cells-Hybrid System of Solid Oxide Fuel Cells (SOFC) and Micro Gas Turbines (MGT)
,” Mitsubishi Power, Kanagawa, Japan, accessed Apr. 1, 2021, https://power.mhi.com/products/sofc
33.
Pezzini
,
P.
,
Caratozzolo
,
F.
, and
Traverso
,
A.
,
2011
, “
Real-Time Simulation of an Experimental RIG with Pressurized SOFC
,”
ASME
Paper No. GT2011-45527.10.1115/GT2011-45527
34.
Ferrari
,
M. L.
,
Traverso
,
A.
,
Pascenti
,
M.
, and
Massardo
,
A. F.
,
2007
, “
Early Start-Up of Solid Oxide Fuel Cell Hybrid Systems With Ejector Cathodic Recirculation: Experimental Results and Model Verification
,”
Proc. Inst. Mech. Eng. Part A J. Power Energy
,
221
(
5
), pp.
627
635
.10.1243/09576509JPE438
35.
Ferrari
,
M. L.
,
Pascenti
,
M.
, and
Abrassi
,
A.
,
2019
, “
Test Rig for Emulation of Turbocharged SOFC Plants
,”
E3S Web Conf.
,
113
, p.
02001
.10.1051/e3sconf/201911302001
36.
Chen
,
J.
,
Li
,
J.
,
Zhou
,
D.
,
Zhang
,
H.
, and
Weng
,
S.
,
2018
, “
Control Strategy Design for a SOFC-GT Hybrid System Equipped With Anode and Cathode Recirculation Ejectors
,”
Appl. Therm. Eng.
,
132
, pp.
67
79
.10.1016/j.applthermaleng.2017.12.079
37.
Zaccaria
,
V.
,
Tucker
,
D.
, and
Traverso
,
A.
,
2016
, “
Transfer Function Development for SOFC/GT Hybrid Systems Control Using Cold Air Bypass
,”
Appl. Energy
,
165
, pp.
695
706
.10.1016/j.apenergy.2015.12.094
38.
Ratz
,
J.
,
Leichtfuß
,
S.
,
Beck
,
M.
,
Schiffer
,
H.-P.
, and
Fröhlig
,
F.
,
2019
, “
Surge Margin Optimization of Centrifugal Compressors Using a New Objective Function Based on Local Flow Parameters
,”
Int. J. Turbomach., Propuls. Power
,
4
(
4
), p.
42
.10.3390/ijtpp4040042
39.
Traverso
,
A.
,
2005
, “
TRANSEO Code for the Dynamic Performance Simulation of Micro Gas Turbine Cycles
,”
ASME
Paper No. GT2005-68101.10.1115/GT2005-68101
40.
Traverso
,
A.
,
Magistri
,
L.
,
Scarpellini
,
R.
, and
Massardo
,
A.
,
2003
, “
Demonstration Plant and Expected Performance of an Externally Fired Micro Gas Turbine for Distributed Power Generation
,”
ASME
Paper No. GT2003-38268.10.1115/GT2003-38268
41.
Ferrari
,
M. L.
,
Pascenti
,
M.
, and
Massardo
,
A. F.
,
2008
, “
Ejector Model for High Temperature Fuel Cell Hybrid Systems: Experimental Validation at Steady-State and Dynamic Conditions
,”
ASME J. Fuel Cell Sci. Technol.
,
5
(
4
), p.
041005
.10.1115/1.2890102
42.
Dixon
,
S. L.
, and
Hall
,
C. A.
,
2013
,
Fluid Mechanics and Thermodynamics of Turbomachinery
, 7th ed., Butterworth-Heinemann, Oxford, UK.
43.
Traverso
,
A.
,
2004
,
TRANSEO: A New Simulation Tool for Transient Analysis of Innovative Energy Systems
, Ph.D. thesis,
University of Genoa
, Genoa, Italy.
44.
Ali
,
M. T.
,
2020
, “
SI Psychrometric Chart
,” MATLAB Cent. File Exch., accessed Nov. 20, 2020, https://it.mathworks.com/matlabcentral/fileexchange/49154-si-psychrometric-chart
45.
Sanaye
,
S.
, and
Tahani
,
M.
,
2010
, “
Analysis of Gas Turbine Operating Parameters With Inlet Fogging and Wet Compression Processes
,”
Appl. Therm. Eng.
,
30
(
2–3
), pp.
234
244
.10.1016/j.applthermaleng.2009.08.011
46.
Roumeliotis
,
I.
, and
Mathioudakis
,
K.
,
2010
, “
Evaluation of Water Injection Effect on Compressor and Engine Performance and Operability
,”
Appl. Energy
,
87
(
4
), pp.
1207
1216
.10.1016/j.apenergy.2009.04.039
47.
Mantelli
,
L.
,
De Campo
,
M.
,
Ferrari
,
M. L.
, and
Magistri
,
L.
,
2019
, “
Fuel Flexibility for a Turbocharged SOFC System
,”
Energy Procedia
,
158
, pp.
1974
1979
.10.1016/j.egypro.2019.01.454
You do not currently have access to this content.