Abstract

We investigate the occurrence and source of modulations in the gain and phase of flame transfer functions (FTF) measured in perfectly premixed, bluff body stabilized CH4/H2 and pure H2 flames. The modulations are shown to be caused by flow disturbances originating from the upstream geometry, in particular the grub screws used to center the bluff body, indicative of a more generalized phenomenon of convective wave propagation. Velocity measurements are performed at various locations around the injector dump plane, inside the injector pipe, and in the wake of the bluff body to provide detailed insight into the flow. Peaks corresponding to natural shedding frequencies of the grub screws appear in the unforced velocity spectra and it is found that the magnitude of these convective modes depends on their location. Flame imaging and PIV measurements show that these disturbances do not show up in the mean velocity and flame shape which appear approximately axisymmetric. However, the urms and vrms fields capture a strong asymmetry due to convective disturbances. To further quantify the role of these convective disturbances, hydrodynamic transfer functions are constructed from the forced cold flow, and similar modulations observed in the FTFs are found. A strong correlation is obtained between the two transfer functions, subsequently, the modulations are shown to be centered on the vortex shedding frequency corresponding to the first convective mode. The reason behind the excitation of the first mode is due to a condition that states that for acoustic-convective interaction to be possible, the shedding (convective) frequency needs to be lower than the cutoff frequency of the flame response. This condition is shown to be more relevant for hydrogen flames compared to methane flames due to their shorter flame lengths and thus increased cutoff frequency.

References

1.
ETN
,
2020
, “
Hydrogen and Gas Turbines: The Path Towards a Zero-Carbon Gas Turbine
,” ETN Global, Brussels, Belgium.
2.
Bothien
,
M. R.
,
Ciani
,
A.
,
Wood
,
J. P.
, and
Fruechtel
,
G.
,
2019
, “
Toward Decarbonized Power Generation With Gas Turbines by Using Sequential Combustion for Burning Hydrogen
,”
ASME J. Eng. Gas Turbines Power
,
141
(
12
), p. 121013.10.1115/1.4045256
3.
Indlekofer
,
T.
,
Faure-Beaulieu
,
A.
,
Noiray
,
N.
, and
Dawson
,
J.
,
2021
, “
The Effect of Dynamic Operating Conditions on the Thermoacoustic Response of Hydrogen Rich Flames in an Annular Combustor
,”
Combust. Flame
,
223
, pp.
284
294
.10.1016/j.combustflame.2020.10.013
4.
Schuller
,
T.
,
Poinsot
,
T.
, and
Candel
,
S.
,
2020
, “
Dynamics and Control of Premixed Combustion Systems Based on Flame Transfer and Describing Functions
,”
J. Fluid Mech.
,
894
, p. P1.10.1017/jfm.2020.239
5.
Durox
,
D.
,
Schuller
,
T.
,
Noiray
,
N.
, and
Candel
,
S.
,
2009
, “
Experimental Analysis of Nonlinear Flame Transfer Functions for Different Flame Geometries
,”
Proc. Combust. Inst.
,
32
(
1
), pp.
1391
1398
.10.1016/j.proci.2008.06.204
6.
Kim
,
K. T.
,
Lee
,
J. G.
,
Quay
,
B. D.
, and
Santavicca
,
D. A.
,
2010
, “
Response of Partially Premixed Flames to Acoustic Velocity and Equivalence Ratio Perturbations
,”
Combust. Flame
,
157
(
9
), pp.
1731
1744
.10.1016/j.combustflame.2010.04.006
7.
Palies
,
P.
,
Durox
,
D.
,
Schuller
,
T.
, and
Candel
,
S.
,
2011
, “
Nonlinear Combustion Instability Analysis Based on the Flame Describing Function Applied to Turbulent Premixed Swirling Flames
,”
Combust. Flame
,
158
(
10
), pp.
1980
1991
.10.1016/j.combustflame.2011.02.012
8.
Cho
,
J. H.
, and
Lieuwen
,
T.
,
2005
, “
Laminar Premixed Flame Response to Equivalence Ratio Oscillations
,”
Combust. Flame
,
140
(
1–2
), pp.
116
129
.10.1016/j.combustflame.2004.10.008
9.
Schuller
,
T.
,
Durox
,
D.
, and
Candel
,
S.
,
2003
, “
A Unified Model for the Prediction of Laminar Flame Transfer Functions: Comparisons Between Conical and V-Flame Dynamics
,”
Combust. Flame
,
134
(
1–2
), pp.
21
34
.10.1016/S0010-2180(03)00042-7
10.
Polifke
,
W.
, and
Lawn
,
C.
,
2007
, “
On the Low-Frequency Limit of Flame Transfer Functions
,”
Combust. Flame
,
151
(
3
), pp.
437
451
.10.1016/j.combustflame.2007.07.005
11.
Dowling
,
A. P.
,
1999
, “
A Kinematic Model of a Ducted Flame
,”
J. Fluid Mech.
,
394
, pp.
51
72
.10.1017/S0022112099005686
12.
Fleifil
,
M.
,
Annaswamy
,
A. M.
,
Ghoneim
,
Z. A.
, and
Ghoniem
,
A. F.
,
1996
, “
Response of a Laminar Premixed Flame to Flow Oscillations
,”
Combust. Flame
,
106
(
4
), pp.
487
510
.10.1016/0010-2180(96)00049-1
13.
Kaufmann
,
A.
,
Nicoud
,
F.
, and
Poinsot
,
T.
,
2002
, “
Flow Forcing Techniques for Numerical Simulation of Combustion Instabilities
,”
Combust. Flame
,
131
(
4
), pp.
371
385
.10.1016/S0010-2180(02)00419-4
14.
Huber
,
A.
, and
Polifke
,
W.
,
2009
, “
Dynamics of Practical Premixed Flames, Part I
,”
Int. J. Spray Combust. Dyn.
,
1
(
2
), pp.
199
228
.10.1260/175682709788707431
15.
Bothien
,
M.
,
Lauper
,
D.
,
Yang
,
Y.
, and
Scarpato
,
A.
,
2019
, “
Reconstruction and Analysis of the Acoustic Transfer Matrix of a Reheat Flame From Large-Eddy Simulations
,”
ASME J. Eng. Gas Turbines Power
,
141
(
2
), p.
021018
.10.1115/1.4041151
16.
Komarek
,
T.
, and
Polifke
,
W.
,
2010
, “
Impact of Swirl Fluctuations on the Flame Response of a Perfectly Premixed Swirl Burner
,”
ASME J. Eng. Gas Turbines Power
,
132
(
6
), p.
061503
.10.1115/1.4000127
17.
Palies
,
P.
,
Durox
,
D.
,
Schuller
,
T.
, and
Candel
,
S.
,
2010
, “
The Combined Dynamics of Swirler and Turbulent Premixed Swirling Flames
,”
Combust. Flame
,
157
(
9
), pp.
1698
1717
.10.1016/j.combustflame.2010.02.011
18.
Gatti
,
M.
,
Gaudron
,
R.
,
Mirat
,
C.
,
Zimmer
,
L.
, and
Schuller
,
T.
,
2019
, “
Impact of Swirl and Bluff-Body on the Transfer Function of Premixed Flames
,”
Proc. Combust. Inst.
,
37
(
4
), pp.
5197
5204
.10.1016/j.proci.2018.06.148
19.
Paschereit
,
C. O.
,
Schuermans
,
B.
,
Polifke
,
W.
, and
Mattson
,
O.
,
2002
, “
Measurement of Transfer Matrices and Source Terms of Premixed Flames
,”
ASME J. Eng. Gas Turbines Power
,
124
(
2
), pp.
239
247
.10.1115/1.1383255
20.
Kim
,
K.
,
Lee
,
J.
,
Quay
,
B.
, and
Santavicca
,
D.
,
2010
, “
Spatially Distributed Flame Transfer Functions for Predicting Combustion Dynamics in Lean Premixed Gas Turbine Combustors
,”
Combust. Flame
,
157
(
9
), pp.
1718
1730
.10.1016/j.combustflame.2010.04.016
21.
Kim
,
K. T.
, and
Santavicca
,
D. A.
,
2013
, “
Interference Mechanisms of Acoustic/Convective Disturbances in a Swirl-Stabilized Lean-Premixed Combustor
,”
Combust. Flame
,
160
(
8
), pp.
1441
1457
.10.1016/j.combustflame.2013.02.022
22.
Nygård
,
H. T.
, and
Worth
,
N.
,
2021
, “
Flame Transfer Functions and Dynamics of a Closely Confined Premixed Body Stabilised Flame With Swirl
,”
ASME J. Eng. Gas Turbines Power
, 143(4), p. 041011.10.1115/1.4049513.
23.
Gatti
,
M.
,
Gaudron
,
R.
,
Mirat
,
C.
, and
Schuller
,
T.
,
2017
, “
Effects of the Injector Design on the Transfer Function of Premixed Swirling Flames
,”
ASME
Paper No. GT2017-63874.10.1115/GT2017-63874
24.
Gatti
,
M.
,
Gaudron
,
R.
,
Mirat
,
C.
,
Zimmer
,
L.
, and
Schuller
,
T.
,
2018
, “
A Comparison of the Transfer Functions and Flow Fields of Flames With Increasing Swirl Number
,”
ASME
Paper No: GT2018-76105.10.1115/GT2018-76105
25.
Æsøy
,
E.
,
Aguilar
,
J. G.
,
Wiseman
,
S.
,
Bothien
,
M. R.
,
Worth
,
N. A.
, and
Dawson
,
J. R.
,
2020
, “
Scaling and Prediction of Transfer Functions in Lean Premixed H2/CH4-Flames
,”
Combust. Flame
,
215
, pp.
269
282
.10.1016/j.combustflame.2020.01.045
26.
Higgins
,
B.
,
McQuay
,
M. Q.
,
Lacas
,
F.
,
Rolon
,
J. C.
,
Darabiha
,
N.
, and
Candel
,
S.
,
2001
, “
Systematic Measurements of OH Chemiluminescence for Fuel-Lean, High-Pressure, Premixed, Laminar Flames
,”
Fuel
,
80
(
1
), pp.
67
74
.10.1016/S0016-2361(00)00069-7
27.
Seybert
,
A. F.
, and
Ross
,
D. F.
,
1977
, “
Experimental Determination of Acoustic Properties Using a Two–Microphone Random–Excitation Technique
,”
J. Acoust. Soc. Am.
,
61
(
5
), pp.
1362
1370
.10.1121/1.381403
28.
Åbom
,
M.
, and
Bodén
,
H.
,
1988
, “
Error Analysis of Two–Microphone Measurements in Ducts With Flow
,”
J. Acoust. Soc. Am.
,
83
(
6
), pp.
2429
2438
.10.1121/1.396322
29.
Lieuwen
,
T. C.
,
2012
,
Unsteady Combustor Physics
,
Cambridge University Press
,
Cambridge, UK
.
30.
Polifke
,
W.
,
Kopitz
,
J.
, and
Serbanoviv
,
A.
,
2001
, “
Impact of the Fuel Time Lag Distribution in Elliptical Premix Nozzles on Combustion Stability
,”
AIAA
Paper No. A01-30803.10.2514/6.2001-2104
31.
Schuermans
,
B.
,
Bellucci
,
V.
,
Guethe
,
F.
,
Meili
,
F.
,
Flohr
,
P.
, and
Paschereit
,
C. O.
,
2004
, “
A Detailed Analysis of Thermoacoustic Interaction Mechanisms in a Turbulent Premixed Flame
,”
ASME
Paper No. GT2004-53831.10.1115/GT2004-53831
32.
Kim
,
K. T.
, and
Santavicca
,
D. A.
,
2013
, “
Generalization of Turbulent Swirl Flame Transfer Functions in Gas Turbine Combustors
,”
Combust. Sci. Technol.
,
185
(
7
), pp.
999
1015
.10.1080/00102202.2012.752734
33.
Schuller
,
T.
,
Durox
,
D.
,
Palies
,
P.
, and
Candel
,
S.
,
2012
, “
Acoustic Decoupling of Longitudinal Modes in Generic Combustion Systems
,”
Combust. Flame
,
159
(
5
), pp.
1921
1931
.10.1016/j.combustflame.2012.01.010
34.
Palies
,
P.
,
Durox
,
D.
,
Schuller
,
T.
, and
Candel
,
S.
,
2011
, “
Acoustic–Convective Mode Conversion in an Aerofoil Cascade
,”
J. Fluid Mech.
,
672
, pp.
545
569
.10.1017/S0022112010006142
35.
Roshko
,
A.
,
1954
, “
On the Development of Turbulent Wakes From Vortex Streets
,” NACA, Washington, DC, Report No. 1191.
36.
Pope
,
S. B.
,
2000
,
Turbulent Flows
,
Cambridge University Press
, Cambridge, UK.
37.
Griffin
,
O. M.
, and
Hall
,
M. S.
,
1991
, “
Review–Vortex Shedding Lock-on and Flow Control in Bluff Body Wakes
,”
ASME J. Fluids Eng.
,
113
(
4
), pp.
526
537
.10.1115/1.2926511
38.
Di Sabatino
,
F.
,
Guiberti
,
T. F.
,
Boyette
,
W. R.
,
Roberts
,
W. L.
,
Moeck
,
J. P.
, and
Lacoste
,
D. A.
,
2018
, “
Effect of Pressure on the Transfer Functions of Premixed Methane and Propane Swirl Flames
,”
Combust. Flame
,
193
, pp.
272
282
.10.1016/j.combustflame.2018.03.011
39.
Gaudron
,
R.
,
Gatti
,
M.
,
Mirat
,
C.
, and
Schuller
,
T.
,
2019
, “
Flame Describing Functions of a Confined Premixed Swirled Combustor With Upstream and Downstream Forcing
,”
ASME J. Eng. Gas Turbines Power
,
141
(
5
), p.
051016
.10.1115/1.4041000
You do not currently have access to this content.