Abstract

Nanosecond pulsed discharges have attracted the attention of engine manufacturers due to the possibility of attaining distributed ignition sites that accelerate burn rates while resulting in very little electrode erosion. Multidimensional modeling tools currently capture the electrical structure of such discharges accurately, but resolving the chemical structure remains a challenging problem owing to the disparity of time-scales in streamer propagation (nanoseconds) and ignition phenomena (microseconds). The purpose of this study is to extend multidimensional results toward resolving the chemical structure in the wake of streamers (or the afterglow) by using a batch reactor model (BRM). This can afford the use of very detailed chemical kinetic information. The full nonequilibrium nature of the electrons is taken into account, along with fast gas heating, shock wave propagation, and thermal diffusion. The results shed light on ignition phenomena brought about by such discharges.

References

1.
Liu
,
J.-B.
,
Ronney
,
P. D.
, and
Gundersen
,
M. A.
,
2003
, “
Premixed Flame Ignition by Transient Plasma Discharges
,”
The 29th International Symposium on Combustion
, Sapporo, Japan, July 21–26, pp.
16
19
.https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.457.5529&rep=rep1&type=pdf
2.
Sevik
,
J.
,
Wallner
,
T.
,
Pamminger
,
M.
,
Scarcelli
,
R.
,
Singleton
,
D.
, and
Sanders
,
J.
,
2016
, “
Extending Lean and Exhaust Gas Recirculation-Dilute Operating Limits of a Modern Gasoline Direct-Injection Engine Using a Low-Energy Transient Plasma Ignition System
,”
ASME J. Eng. Gas Turbines Power
,
138
(
11
), p.
112807
.10.1115/1.4033470
3.
Shiraishi
,
T.
,
Urushihara
,
T.
, and
Gundersen
,
M.
,
2009
, “
A Trial of Ignition Innovation of Gasoline Engine by Nanosecond Pulsed Low Temperature Plasma Ignition
,”
J. Phys. D
,
42
(
13
), p.
135208
.10.1088/0022-3727/42/13/135208
4.
Takana
,
H.
, and
Nishiyama
,
H.
,
2014
, “
Numerical Simulation of Nanosecond Pulsed DBD in Lean Methane–Air Mixture for Typical Conditions in Internal Engines
,”
Plasma Sources Sci. Technol.
,
23
(
3
), p.
034001
.10.1088/0963-0252/23/3/034001
5.
Lefkowitz
,
J. K.
,
Guo
,
P.
,
Ombrello
,
T.
,
Won
,
S. H.
,
Stevens
,
C. A.
,
Hoke
,
J. L.
,
Schauer
,
F.
, and
Ju
,
Y.
,
2015
, “
Schlieren Imaging and Pulsed Detonation Engine Testing of Ignition by a Nanosecond Repetitively Pulsed Discharge
,”
Combust. Flame
,
162
(
6
), pp.
2496
2507
.10.1016/j.combustflame.2015.02.019
6.
Starikovskiy
,
A.
,
2015
, “
Physics and Chemistry of Plasma-Assisted Combustion
,” The Royal Society Publishing, London, UK.
7.
Scarcelli
,
R.
,
Zhang
,
A.
,
Wallner
,
T.
,
Som
,
S.
,
Huang
,
J.
,
Wijeyakulasuriya
,
S.
,
Mao
,
Y.
,
Zhu
,
X.
, and
Lee
,
S.-Y.
,
2018
, “
Development of a Hybrid Lagrangian-Eulerian Model to Describe Spark-Ignition Processes at Engine-Like Turbulent Flow Conditions
,”
ASME
Paper No. ICEF2018-9690.10.1115/ICEF2018-9690
8.
Scarcelli
,
R.
,
Wallner
,
T.
,
Som
,
S.
,
Biswas
,
S.
,
Ekoto
,
I.
,
Breden
,
D.
,
Karpatne
,
A.
, and
Raja
,
L. L.
,
2018
, “
Modeling Non-Equilibrium Discharge and Validating Transient Plasma Characteristics at Above-Atmospheric Pressure
,”
Plasma Sources Sci. Technol.
,
27
(
12
), p.
124006
.10.1088/1361-6595/aaf539
9.
Breden
,
D.
,
Idicheria
,
C. A.
,
Keum
,
S.
,
Najt
,
P. M.
, and
Raja
,
L. L.
,
2019
, “
Modeling of a Dielectric-Barrier Discharge-Based Cold Plasma Combustion Ignition System
,”
IEEE Trans. Plasma Sci.
,
47
(
1
), pp.
410
418
.10.1109/TPS.2018.2882830
10.
Gururajan
,
V.
, and
Egolfopoulos
,
F. N.
,
2017
, “
Transient Plasma Effects on the Autoignition of DME/O2/Ar and C3H8/O2/Ar Mixtures
,”
Proc. Combust. Inst.
,
36
(
3
), pp.
4165
4174
.10.1016/j.proci.2016.06.010
11.
Lanier
,
S.
,
Shkurenkov
,
I.
,
Adamovich
,
I. V.
, and
Lempert
,
W. R.
,
2015
, “
Two-Stage Energy Thermalization Mechanism in Nanosecond Pulse Discharges in Air and Hydrogen–Air Mixtures
,”
Plasma Sources Sci. Technol.
,
24
(
2
), p.
025005
.10.1088/0963-0252/24/2/025005
12.
Sharma
,
A.
,
Subramaniam
,
V.
,
Solmaz
,
E.
, and
Raja
,
L. L.
,
2019
, “
Fully Coupled Modeling of Nanosecond Pulsed Plasma Assisted Combustion Ignition
,”
J. Phys. D
,
52
(
9
), p.
095204
.10.1088/1361-6463/aaf690
13.
Karpatne
,
A.
,
Breden
,
D. P.
, and
Raja
,
L.
,
2017
, “
Simulations of Spark-Plug Transient Plasma Breakdown in Automotive Internal Combustion Engines
,”
SAE
Paper No. 2017-01-0563.10.4271/2017-01-0563
14.
Breden
,
D.
,
Karpatne
,
A.
, and
Raja
,
L.
,
2018
, “
Modelling of Electrode Erosion for Prediction of Spark Plug Lifetime
,”
SAE
Paper No. 2018-01-0175.10.4271/2018-01-0175
15.
Breden
,
D.
,
Raja
,
L. L.
,
Idicheria
,
C. A.
,
Najt
,
P. M.
, and
Mahadevan
,
S.
,
2013
, “
A Numerical Study of High-Pressure Non-Equilibrium Streamers for Combustion Ignition Application
,”
J. Appl. Phys.
,
114
(
8
), p.
083302
.10.1063/1.4818319
16.
Adamovich
,
I. V.
,
Li
,
T.
, and
Lempert
,
W. R.
,
2015
, “
Kinetic Mechanism of Molecular Energy Transfer and Chemical Reactions in Low-Temperature Air-Fuel Plasmas
,”
Philos. Trans. R. Soc. A
,
373
(
2048
), p.
20140336
.10.1098/rsta.2014.0336
17.
Dagaut
,
P.
,
Glarborg
,
P.
, and
Alzueta
,
M. U.
,
2008
, “
The Oxidation of Hydrogen Cyanide and Related Chemistry
,”
Prog. Energy Combust. Sci.
,
34
(
1
), pp.
1
46
.10.1016/j.pecs.2007.02.004
18.
Depcik
,
C.
,
Mangus
,
M.
, and
Ragone
,
C.
,
2014
, “
Ozone-Assisted Combustion—Part I: Literature Review and Kinetic Study Using Detailed n-Heptane Kinetic Mechanism
,”
ASME J. Eng. Gas Turbines Power
,
136
(
9
), p.
091507
.10.1115/1.4027068
19.
Popov
,
N.
,
2011
, “
Fast Gas Heating in a Nitrogen–Oxygen Discharge Plasma—I: Kinetic Mechanism
,”
J. Phys. D
,
44
(
28
), p.
285201
.10.1088/0022-3727/44/28/285201
20.
Flitti
,
A.
, and
Pancheshnyi
,
S.
,
2009
, “
Gas Heating in Fast Pulsed Discharges in N2–O2 Mixtures
,”
Eur. Phys. J.-Appl. Phys.
,
45
(
2
), p.
21001
.10.1051/epjap/2009011
21.
Prince
,
J. C.
, and
Williams
,
F. A.
,
2012
, “
Short Chemical-Kinetic Mechanisms for Low-Temperature Ignition of Propane and Ethane
,”
Combust. Flame
,
159
(
7
), pp.
2336
2344
.10.1016/j.combustflame.2012.02.012
22.
Sanchez, A., and Williams, F., 2016, “
San Diego Mechanism
,” accessed Jan. 1, 2019,
https://web.eng.ucsd.edu/mae/groups/combustion/mechanism.html
23.
Xu
,
D. A.
,
Lacoste
,
D. A.
,
Rusterholtz
,
D. L.
,
Elias
,
P.-Q.
,
Stancu
,
G. D.
, and
Laux
,
C. O.
,
2011
, “
Experimental Study of the Hydrodynamic Expansion Following a Nanosecond Repetitively Pulsed Discharge in Air
,”
Appl. Phys. Lett.
,
99
(
12
), p.
121502
.10.1063/1.3641413
24.
Tholin
,
F.
, and
Bourdon
,
A.
,
2013
, “
Simulation of the Hydrodynamic Expansion Following a Nanosecond Pulsed Spark Discharge in Air at Atmospheric Pressure
,”
J. Phys. D
,
46
(
36
), p.
365205
.10.1088/0022-3727/46/36/365205
25.
Kurganov
,
A.
, and
Tadmor
,
E.
,
2000
, “
New High-Resolution Central Schemes for Nonlinear Conservation Laws and Convection–Diffusion Equations
,”
J. Comput. Phys.
,
160
(
1
), pp.
241
282
.10.1006/jcph.2000.6459
26.
Olsen
,
H.
,
Edmonson
,
R.
, and
Gayhart
,
E.
,
1952
, “
Microchronometric Schlieren Study of Gaseous Expansion From an Electric Spark
,”
J. Appl. Phys.
,
23
(
10
), pp.
1157
1162
.10.1063/1.1702001
27.
Goodwin
,
D. G.
,
Speth
,
R. L.
,
Moffat
,
H. K.
, and
Weber
,
B. W.
,
2018
, “
Cantera: An Object-Oriented Software Toolkit for Chemical Kinetics, Thermodynamics, and Transport Processes
,” Cantera, accessed Sept. 29, 2021, https://www.cantera.org
28.
Hagelaar
,
G.
, and
Pitchford
,
L.
,
2005
, “
Solving the Boltzmann Equation to Obtain Electron Transport Coefficients and Rate Coefficients for Fluid Models
,”
Plasma Sources Sci. Technol.
,
14
(
4
), pp.
722
733
.10.1088/0963-0252/14/4/011
29.
GNU, 2002, “
libMathEval
,” GNU, accessed Jan. 1, 2019, https://www.gnu.org/software/libmatheval/manual/libmatheval.html
30.
Cohen
,
S. D.
,
Hindmarsh
,
A. C.
, and
Dubois
,
P. F.
,
1996
, “
CVODE, A Stiff/Nonstiff Ode Solver in C
,”
Comput. Phys.
,
10
(
2
), pp.
138
143
.10.1063/1.4822377
31.
Serban, R., and Hindmarsh, A. C., 2005, “
CVODE
,”
accessed Jan. 1, 2019, https://computation.llnl.gov/projects/sundials/cvode
32.
Galassi, M., Davies, J., Theiler, J., Gough, B., Jungman, G., Alken, P., Booth, M., Rossi, F., and Rhys, U., 2002, “
GNU Scientific Library
,” GNU, accessed Jan. 1, 2019, https://www.gnu.org/software/gsl/
33.
Engelhardt
,
A.
, and
Phelps
,
A.
,
1963
, “
Elastic and Inelastic Collision Cross Sections in Hydrogen and Deuterium From Transport Coefficients
,”
Phys. Rev.
,
131
(
5
), pp.
2115
2128
.10.1103/PhysRev.131.2115
34.
Kee
,
R. J.
,
Coltrin
,
M. E.
, and
Glarborg
,
P.
,
2005
,
Chemically Reacting Flow: Theory and Practice
,
Wiley
, Hoboken, NJ.
35.
Biswas
,
S.
,
Ekoto
,
I.
, and
Scarcelli
,
R.
,
2018
, “
Transient Plasma Ignition for Automotive Applications
,” IAV Fourth International Conference on Ignition Systems for Gasoline Engines, Berlin, Dec. 6–7, Paper No.
SAND2018-13574C
.https://www.osti.gov/servlets/purl/1761112
36.
Meek
,
J. M.
, and
Craggs
,
J. D.
,
1978
, “
Electrical Breakdown of Gases
,” John Wiley and Sons, Ltd., New York, p.
886
.
37.
Eliasson
,
B.
, and
Kogelschatz
,
U.
,
1991
, “
Nonequilibrium Volume Plasma Chemical Processing
,”
IEEE Trans. Plasma Sci.
,
19
(
6
), pp.
1063
1077
.10.1109/27.125031
38.
Deshaies
,
B.
, and
Joulin
,
G.
,
1984
, “
On the Initiation of a Spherical Flame Kernel
,”
Combust. Sci. Technol.
,
37
(
3–4
), pp.
99
116
.10.1080/00102208408923749
You do not currently have access to this content.