Abstract

This paper presents the effect of eccentricity and surface roughness on the probabilistic performance of two axial groove hydrodynamic journal bearing. In general, it is difficult to quantify experimentally the variabilities involved in dynamic responses of the hydrodynamic bearing due to the randomness involved in surface asperity and eccentricity ratio. The deterministic models available for the analysis of the bearings are not capable to include such uncertainties. Thus, the focus of the study is to quantify such uncertainties on the performance of a two axial grooved journal bearing. To simulate the variabilities of the stochastic variables, Monte Carlo simulation (MCS) is carried out. The steady-state and dynamic coefficients are obtained by solving the Reynolds equation using a surrogate-based finite difference method. The moving least square (MLS) method is used as the surrogate model to increase the computational efficiency of MCS.

References

1.
Griffini
,
D.
,
Salvadori
,
S.
,
Meli
,
E.
,
Panconi
,
S.
,
Ridolfi
,
A.
,
Rindi
,
A.
, and
Baldassarre
,
L.
,
2019
, “
An Efficient Iterative Coupled Model for the Study of the Insurgence of the Morton Effect in Tilting Pad Journal Bearings
,”
ASME J. Eng. Gas Turbines Power
,
141
(
5
), p.
051013
.10.1115/1.4041107
2.
Childs
,
D. W.
, and
Esser
,
P.
,
2019
, “
Measurements Versus Predictions for a Hybrid (Hydrostatic Plus Hydrodynamic) Thrust Bearing for a Range of Orifice Diameters
,”
ASME J. Eng. Gas Turbines Power
,
141
(
6
), p.
061015
.10.1115/1.4042721
3.
Reynolds
,
O.
,
1886
, “
On the Theory of Lubrication and Its Applications to Mr. Beauchamp Tower's Experiments Including an Experimental Determination of the Viscosity of Olive Oil
,”
Phi. Trans.
,
177
, pp.
157
234
.10.1098/rstl.1886.0005
4.
Sommerfeld
,
A.
,
1904
, “
Zur Hydrodynamischen Theorie Der Schmiermittelreibung
,”
Z. Math. Phys.
,
50
, pp.
97
155
.10.1007/BF01657589
5.
Ocvirk
,
F. W.
,
1952
, “
Short-Bearing Approximation for Full Journal Bearings
,” NACA, Washington, DC, Report No. NACA TN 2808.
6.
Raimondi
,
A. A.
, and
Boyd
,
J.
,
1958
, “
A Solution for the Finite Journal Bearing and Its Application to Analysis and Design: I
,”
ASLE Trans.
,
1
(
1
), pp.
194
209
.10.1080/05698195808972330
7.
Pinkus
,
O.
, and
Sternlicht
,
B.
,
1961
,
Theory of Hydrodynamic Lubrication
,
McGraw-Hill B. Co
., New York.
8.
Lund
,
J. W.
, and
Thomsen
,
K. K.
,
1978
, “
A Calculation Method and Data for the Dynamic Coefficients of Oil-Lubricated Journal Bearings
,”
Top. Fluid Film Bear. Rotor Bear. Syst. Des. Optim.
,
ASME
,
New York
, pp.
1
28
.https://dyrobes.com/wp-content/uploads/2015/09/A-Calculation-Method_Oil-Lubricated_ASME-1982_linked.pdf
9.
Christensen
,
H.
,
1969
, “
Stochastic Models for Hydrodynamic Lubrication of Rough Surfaces
,”
Proc. Inst. Mech. Eng.
,
184
(
1
), pp.
1013
1026
.10.1243/PIME_PROC_1969_184_074_02
10.
Christensen
,
H.
, and
Tonder
,
K.
,
1971
, “
The Hydrodynamic Lubrication of Rough Bearing Surfacees of Finite Width
,”
ASME J. Lubr. Tech.
,
93
(
3
), pp.
324
–329.https://doi.org/10.1115/1.3451579
11.
Guha
,
S. K.
,
1993
, “
Analysis of Dynamic Characteristics of Hydrodynamic Journal Bearings With Isotropic Roughness Effects
,”
Wear
,
167
(
2
), pp.
173
179
.10.1016/0043-1648(93)90322-D
12.
Gururajan
,
K.
, and
Prakash
,
J.
,
2000
, “
Effect of Surface Roughness in a Narrow Porous Journal Bearing
,”
ASME J. Tribol.
,
122
(
2
), pp.
472
475
.10.1115/1.555387
13.
Chiang
,
H. L.
,
Hsu
,
C. H.
, and
Lin
,
J. R.
,
2004
, “
Lubrication Performance of Finite Journal Bearings Considering Effects of Couple Stresses and Surface Roughness
,”
Tribol. Int.
,
37
(
4
), pp.
297
307
.10.1016/j.triboint.2003.10.005
14.
Adeshara
,
J. V.
,
Prajapati
,
M. B.
,
Deheri
,
G. M.
, and
Patel
,
R. M.
,
2018
, “
A Study of Hydromagnetic Longitudinal Rough Circular Step Bearing
,”
Adv. Tribol.
,
2018
, pp.
1
7
.10.1155/2018/3981087
15.
Roy
,
L.
, and
Kakoty
,
S. K.
,
2013
, “
Optimum Groove Location of Hydrodynamic Journal Bearing Using Genetic Algorithm
,”
Adv. Tribol.
,
2013
, pp.
1
13
.10.1155/2013/580367
16.
Brito
,
F. P.
,
Miranda
,
A. S.
, and
Fillon
,
M.
,
2016
, “
Analysis of the Effect of Grooves in Single and Twin Axial Groove Journal Bearings Under Varying Load Direction
,”
Tribol. Int.
,
103
, pp.
609
619
.10.1016/j.triboint.2016.08.010
17.
McCarthy
,
D. M. C.
,
Glavatskih
,
S. B.
, and
Byheden
,
Å.
,
2009
, “
Influence of Oil Type on the Performance Characteristics of a Two‐Axial Groove Journal Bearing
,”
Lubr. Sci.
,
21
(
9
), pp.
366
377
.10.1002/ls.98
18.
Das
,
B. J.
, and
Roy
,
L.
,
2018
, “
Analysis and Comparison of Steady-State Performance Characteristics of Two-Axial Groove and Multilobe Hydrodynamic Bearings Lubricated With Non-Newtonian Fluids
,”
Proc. Inst. Mech. Eng. Part J: J. Eng. Tribol.
,
232
(
12
), pp.
1581
1596
.10.1177/1350650118758087
19.
Bhagat
,
C.
, and
Roy
,
L.
,
2014
, “
Steady State Thermo-Hydrodynamic Analysis of Two-Axial Groove and Multilobe Hydrodynamic Bearings
,”
Tribol. Ind.
,
36
(
4
), pp.
475
487
.https://www.researchgate.net/publication/276149406_Steady_State_Thermo-Hydrodynamic_Analysis_of_Two-Axial_groove_and_Multilobe_Hydrodynamic_Bearings
20.
da Silva
,
H. A. P.
, and
Nicoletti
,
R.
,
2018
, “
Design of Tilting-Pad Journal Bearings Considering Bearing Clearance and Uncertainty and Reliability Analysis
,”
ASME J. Tribol.
,
141
(
1
), pp.
011703
.10.1115/1.4041021
21.
Griffini
,
D.
,
Salvadori
,
S.
,
Carnevale
,
M.
, and
Montomoli
,
F.
,
2018
, “
Uncertainty Quantification in Hydrodynamic Bearings
,”
Energy Procedia
,
148
, pp.
884
891
.10.1016/j.egypro.2018.08.104
22.
Urbiola-Soto
,
L.
,
2020
, “
Influence of Manufacturing Variation on the Dynamic and Tribological Performance of Tilting Pad Journal Bearings
,”
ASME J. Eng. Gas Turbines Power
,
143
(
6
), p.
061017
.10.1115/1.4049205
23.
Maharshi
,
K.
,
Mukhopadhyay
,
T.
,
Roy
,
B.
,
Roy
,
L.
, and
Dey
,
S.
,
2018
, “
Stochastic Dynamic Behaviour of Hydrodynamic Journal Bearings Including the Effect of Surface Roughness
,”
IJMS
,
142–143
, pp.
370
383
.10.1016/j.ijmecsci.2018.04.012
24.
Cavalini
,
A. A.
,
Silva
,
A. D. G.
,
Lara-Molina
,
F. A.
, and
Steffen
,
V.
,
2017
, “
Dynamic Analysis of a Flexible Rotor Supported by Hydrodynamic Bearings With Uncertain Parameters
,”
Meccanica
,
52
(
11–12
), pp.
2931
2943
.10.1007/s11012-017-0616-2
25.
Roy
,
B.
, and
Dey
,
S.
,
2021
, “
Machine Learning-Based Performance Analysis of Two-Axial-Groove Hydrodynamic Journal Bearings
,”
Proc. Inst. Mech. Eng. Part J: J Eng. Tribol.
, pp.
1
14
.10.1177/1350650121992895
26.
Dey
,
S.
,
Mukhopadhyay
,
T.
, and
Adhikari
,
S.
,
2017
, “
Metamodel Based High-Fidelity Stochastic Analysis of Composite Laminates: A Concise Review With Critical Comparative Assessment
,”
Compos. Struct.
,
171
, pp.
227
250
.10.1016/j.compstruct.2017.01.061
27.
Sudret
,
B.
,
Marelli
,
S.
, and
Wiart
,
J.
,
2017
, “
Surrogate Models for Uncertainty Quantification: An Overview
,” 11th European Conference on Antennas and Propagation (
EUCAP
),
IEEE, Paris, France, Mar. 19–24
, pp.
793
797
.10.23919/EuCAP.2017.7928679
28.
Dey
,
S.
,
Mukhopadhyay
,
T.
, and
Adhikari
,
S.
,
2018
,
Uncertainty Quantification in Laminated Composites: A Meta-Model Based Approach
,
CRC Press
, Boca Raton, FL.
29.
Makrygiorgos
,
G.
,
Maggioni
,
G. M.
, and
Mesbah
,
A.
,
2020
, “
Surrogate Modeling for Fast Uncertainty Quantification: Application to 2D Population Balance Models
,”
Comput. Chem. Eng.
,
138
, p.
106814
.10.1016/j.compchemeng.2020.106814
30.
Mukhopadhyay
,
T.
,
Chakraborty
,
S.
,
Dey
,
S.
,
Adhikari
,
S.
, and
Chowdhury
,
R.
,
2017
, “
A Critical Assessment of Kriging Model Variants for High-Fidelity Uncertainty Quantification in Dynamics of Composite Shells
,”
Arch. Comput. Methods Eng.
,
24
(
3
), pp.
495
518
.10.1007/s11831-016-9178-z
31.
Kumar
,
R. R.
,
Karsh
,
P. K.
,
Pandey
,
K. M.
, and
Dey
,
S.
,
2019
, “
Stochastic Natural Frequency Analysis of Skewed Sandwich Plates
,”
Eng. Comput.
,
36
, pp.
2179
2199
.10.1108/EC-01-2019-0034
32.
Tvrda
,
K.
,
2017
, “
RSM Method in Probabilistic Analysis of the Foundation Plate
,”
Procedia Eng.
,
190
, pp.
516
521
.10.1016/j.proeng.2017.05.372
33.
Dey
,
S.
,
Mukhopadhyay
,
T.
,
Spickenheuer
,
A.
,
Gohs
,
U.
, and
Adhikari
,
S.
,
2016
, “
Uncertainty Quantification in Natural Frequency of Composite plates-An Artificial Neural Network Based Approach
,”
Adv. Compos. Lett.
,
25
(
2
), pp.
43
48
.10.1177/096369351602500203
34.
Trinchero
,
R.
,
Larbi
,
M.
,
Torun
,
H. M.
,
Canavero
,
F. G.
, and
Swaminathan
,
M.
,
2019
, “
Machine Learning and Uncertainty Quantification for Surrogate Models of Integrated Devices With a Large Number of Parameters
,”
IEEE Access
,
7
, pp.
4056
4066
.10.1109/ACCESS.2018.2888903
35.
Silva Barbosa
,
J.
,
Campanine Sicchieri
,
L.
,
Dourado
,
A.
,
Cavalini
,
A. A.
, Jr.
, and
Steffen
,
V.
, Jr.
,
2020
, “
Kriging Approach Dedicated to Represent Hydrodynamic Bearings
,”
ASME J. Eng. Gas Turbines Power
,
143
(
6
), p.
061016
.10.1115/1.4049307
36.
Levin
,
D.
,
1998
, “
The Approximation Power of Moving Least-Squares
,”
Math. Comput.
,
67
(
224
), pp.
1517
1531
.10.1090/S0025-5718-98-00974-0
37.
Lancaster
,
P.
, and
Salkauskas
,
K.
,
1981
, “
Surfaces Generated by Moving Least Squares Methods
,”
Math. Comput.
,
37
(
155
), pp.
141
–1
58
.10.1090/S0025-5718-1981-0616367-1
You do not currently have access to this content.