Abstract

Aviation faces several challenges to maintain growth while adapting to an environmentally viable footprint. Increasing efficiency, which in the past induced a steady rise in the turbine entry temperatures, requires successful cooling of critical components to relieve the combined effects of higher temperatures and pressures. Starting with a conceptual design that alters the flow path of the secondary air system to divert bled air into a heat exchanger, this research focuses on assessing the effects of actual flight conditions on a cooled cooling air (CCA) system. In particular, the study undertakes a transient analysis of the CCA heat exchanger under a stressful temperature increase. The performance of the unit from idle to max take off (MTO) conditions required a unique facility for experimental testing, also capable of reaching and sustaining the necessary specifications. The novelty of the concept compelled the development of numerical models to aid the design and evaluation of the experiment. These models use one- and three-dimensional techniques to perform preemptive analysis of the test range, to ensure safety during the actual test, and to provide valuable information about the facility system and the inner flow structure of the heat exchanger. The study completed successful experiments using numerically generated procedures. A back-to-back configuration, representative of multiple installations, offers evidence about the cross-influence of each heat exchanger. The research also examined the dynamic effects to provide the bases for further studies focusing on this topic.

References

1.
Siim
,
K.
, and
Máire
,
G.-Q.
,
2011
,
Flightpath 2050 Europe's Vision for Aviation
, Publications Office of the European Union,
Luxembourg
.10.2777/50266
2.
Kim
,
J. M.
,
2016
,
Design and Characterisation of Aerothermal Performance of a Compact Tubular Heat Exchanger for an Aero Gas Turbine
,
Pusan National University
,
Busan, South Korea
.
3.
Walker
,
A. D.
, and
Guo
,
L.
,
2015
, “
Impact of a Cooled Cooling Air Installation on the External Aerodynamics of a Gas Turbine Combustion System
,”
ASME
Paper No. GT2015-43186.10.1115/GT2015-43186
4.
Walker
,
A. D.
,
Koli
,
B.
,
Guo
,
L.
,
Beecroft
,
P.
, and
Zedda
,
M.
,
2017
, “
Impact of a Cooled Cooling Air System on the External Aerodynamics of a Gas Turbine Combustion System
,”
ASME J. Eng. Gas Turbines Power
,
139
(
5
), p. 051504. 10.1115/1.4035228
5.
Walker
,
A. D.
,
Carrotte
,
J. F.
, and
McGuirk
,
J. J.
,
2008
, “
Compressor/Diffuser/Combustor Aerodynamic Interactions in Lean Module Combustors
,”
ASME J. Eng. Gas Turbines Power
,
130
(
1
), p.
011504
.10.1115/1.2747646
6.
Bruening
,
G. B.
, and
Chang
,
W. S.
,
1999
, “
Cooled Cooling Air Systems for Turbine Thermal Management
,”
ASME
Paper No. 99-GT-014.10.1115/99-GT-014
7.
Wilfert
,
G.
,
Sieber
,
J.
,
Rolt
,
A.
,
Baker
,
N.
,
Touyeras
,
A.
, and
Colantuoni
,
S.
,
2007
, “
New Environmental Friendly Aero Engine Core Concepts. ISABE-2007-1120
,”
18th International Symposium on Air Breathing Engines
, Beijing, China, Sept. 2–7.http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.619.6911&rep=rep1&type=pdf
8.
Elango
,
P.
, and
Walker
,
A. D.
,
2016
, “
An Investigation of Flush Off-Takes for Use in a Cooled Cooling Air System
,”
Proceedings of the Royal Aeronautical Society Applied Aerodynamics Conference
,
Royal Aeronautical Society
,
Bristol, UK
, July 19–21, Standard No.
C105517
.https://pdfs.semanticscholar.org/2b4b/ac966fe1f69b3609767471e7e60581154abe.pdf
9.
Spanelis
,
A.
,
Walker
,
A. D.
, and
Beecroft
,
P. A.
,
2017
, “
The Aerodynamic Design of the Low Pressure Air Delivery Ducts for a Cooled Cooling Air System
,”
ASME
Paper No. GT2017-63959.10.1115/GT2017-63959
10.
Walker
,
A. D.
,
Koli
,
B.
, and
Beecroft
,
P. A.
,
2019
, “
Influence of Purge Flow Swirl at Exit to the High-Pressure Compressor on OGV/Pre-Diffuser and Combustion System Aerodynamics
,”
ASME J. Turbomach.
,
141
(
9
), p.
091009
.10.1115/1.4043781
11.
Kim
,
C. S.
,
Kim
,
H. J.
,
Cho
,
J. R.
,
Park
,
S. H.
, and
Ha
,
M. Y.
,
2016
, “
Manufacturing and Mechanical Evaluation of Cooled Cooling Air (CCA) Heat Exchanger for Aero Engine
,”
Int. J. Precis. Eng. Manuf.
,
17
(
9
), pp.
1195
1200
.10.1007/s12541-016-0143-4
12.
Min
,
J. K.
,
Jeong
,
J. H.
,
Ha
,
M. Y.
, and
Kim
,
K. S.
,
2009
, “
High Temperature Heat Exchanger Studies for Applications to Gas Turbines
,”
Heat Mass Transfer
,
46
(
2
), pp.
175
186
.10.1007/s00231-009-0560-3
13.
Mucci
,
A.
,
Kholi
,
F. K.
,
Ha
,
M. Y.
,
Min
,
J. K.
,
Beecroft
,
P. A.
,
Yoon
,
S. Y.
,
Yun
,
W. G.
, and
Sibilli
,
T.
,
2019
, “
Transient Regime Simulation From Idle to Maximum Take-Off Flight Conditions of Cooled Cooling Air Heat Exchanger for an Aero Gas Turbine Heat Management
,”
ASME
Paper No. GT2019-90701.10.1115/GT2019-90701
14.
Kim
,
N.-H.
,
Cho
,
J.-R.
, and
Ra
,
Y.-J.
,
2018
, “
Structural Integrity Analysis and Evaluation of Cooled Cooling Air Heat Exchanger for Aero Engine
,”
Int. J. Precis. Eng. Manuf.
,
19
(
4
), pp.
529
535
.10.1007/s12541-018-0064-5
15.
Taler
,
D.
,
2018
,
Numerical Modelling and Experimental Testing of Heat Exchangers
,
Springer International Publishing
,
Basel, Switzerland
.
16.
Kim
,
M. J.
,
Moon
,
J. H.
,
Bae
,
Y.
,
Kim
,
Y. I.
, and
Lee
,
H. J.
,
2017
, “
Transient Performance of Air-Cooled Condensing Heat Exchanger in Long-Term Passive Cooling System Under Decay Heat Load
,”
Ann. Nucl. Energy
,
102
, pp.
274
279
.10.1016/j.anucene.2016.12.033
17.
Zhang
,
Y.
,
Lu
,
D.
,
Du
,
Z.
,
Fu
,
X.
, and
Wu
,
G.
,
2015
, “
Numerical and Experimental Investigation on the Transient Heat Transfer Characteristics of C-Shape Rod Bundles Used in Passive Residual Heat Removal Heat Exchangers
,”
Ann. Nucl. Energy
,
83
, pp.
147
160
.10.1016/j.anucene.2015.04.022
18.
Fotowat
,
S.
,
Askar
,
S.
, and
Fartaj
,
A.
,
2018
, “
Transient Response of a Meso Heat Exchanger With Temperature Step Variation
,”
Int. J. Heat Mass Transfer
,
122
, pp.
1172
1181
.10.1016/j.ijheatmasstransfer.2017.12.062
19.
Alfarawi
,
S.
,
Al-Dadah
,
R.
, and
Mahmoud
,
S.
,
2017
, “
Transient Investigation of Mini-Channel Regenerative Heat Exchangers: Combined Experimental and CFD Approach
,”
Appl. Therm. Eng.
,
125
, pp.
346
358
.10.1016/j.applthermaleng.2017.07.038
20.
Gao
,
T.
,
Geer
,
J.
, and
Sammakia
,
B.
,
2015
, “
Development and Verification of Compact Transient Heat Exchanger Models Using Transient Effectiveness Methodologies
,”
Int. J. Heat Mass Transfer
,
87
, pp.
265
278
.10.1016/j.ijheatmasstransfer.2015.03.091
21.
Gao
,
T.
,
Sammakia
,
B.
,
Geer
,
J.
,
David
,
M.
, and
Schmidt
,
R.
,
2014
, “
Experimentally Verified Transient Models of Data Center Crossflow Heat Exchangers
,”
ASME
Paper No. IMECE2014-36022.10.1115/IMECE2014-36022
22.
Gao
,
T.
,
Geer
,
J.
, and
Sammakia
,
B.
,
2015
, “
Review and Analysis of Cross Flow Heat Exchanger Transient Modeling for Flow Rate and Temperature Variations
,”
ASME J. Therm. Sci. Eng. Appl.
,
7
(
4
), p.
041017
.10.1115/1.4031222
23.
Navarro
,
H.
, and
Cabezas
,
G.
,
2007
, “
Effectiveness-Ntu Computation With a Mathematical Model for Cross-Flow Heat Exchangers
,”
Braz. J. Chem. Eng.
,
24
(
4
), pp.
509
521
.10.1590/S0104-66322007000400005
24.
Asgharpour
,
A.
,
Hajidavalloo
,
E.
, and
Taheri
,
M.
,
2013
, “
Experimental and Analytical Investigation of Transient Behavior of Coupled Heat Exchangers
,”
Appl. Therm. Eng.
,
60
(
1–2
), pp.
172
181
.10.1016/j.applthermaleng.2013.06.047
25.
Mishra
,
M.
,
Das
,
P. K.
, and
Sarangi
,
S.
,
2006
, “
Transient Behaviour of Crossflow Heat Exchangers Due to Perturbations in Temperature and Flow
,”
Int. J. Heat Mass Transfer
,
49
(
5–6
), pp.
1083
1089
.10.1016/j.ijheatmasstransfer.2005.09.003
26.
Regulagadda
,
P.
,
Naterer
,
G. F.
, and
Dincer
,
I.
,
2011
, “
Transient Heat Exchanger Response With Pressure Regulated Outflow
,”
ASME J. Therm. Sci. Eng. Appl.
,
3
(
2
), p.
021008
.10.1115/1.4004009
27.
Silaipillayarputhur
,
K.
, and
Idem
,
S.
,
2014
, “
Transient Performance Model for a Multipass Cross-Flow Heat Exchanger
,”
Heat Transfer Eng.
,
35
(
1
), pp.
15
24
.10.1080/01457632.2013.810082
28.
Silaipillayarputhur
,
K.
, and
Idem
,
S. A.
,
2015
, “
Transient Response of a Cross Flow Heat Exchanger Subjected to Temperature and Flow Perturbations
,”
ASME
Paper No. IMECE2015-52562.10.1115/IMECE2015-52562
29.
Taler
,
D.
,
Taler
,
J.
, and
Wrona
,
K.
,
2020
, “
Transient Response of a Plate-Fin-and-Tube Heat Exchanger Considering Different Heat Transfer Coefficients in Individual Tube Rows
,”
Energy
,
195
, p.
117023
.10.1016/j.energy.2020.117023
30.
Marchionni
,
M.
,
Chai
,
L.
,
Bianchi
,
G.
, and
Tassou
,
S. A.
,
2019
, “
Numerical Modelling and Transient Analysis of a Printed Circuit Heat Exchanger Used as Recuperator for Supercritical CO2 Heat to Power Conversion Systems
,”
Appl. Therm. Eng.
,
161
, p.
114190
.10.1016/j.applthermaleng.2019.114190
31.
Malinowski
,
L.
,
2019
, “
A Semi-Analytical Method for Transient Temperature Field Calculation in a Parallel-Flow Four-Channel Four-Fluid Heat Exchanger
,”
Int. J. Heat Mass Transfer
,
135
, pp.
318
322
.10.1016/j.ijheatmasstransfer.2019.01.138
32.
Ghoreishi-Madiseh
,
S. A.
,
Kuyuk
,
A. F.
, and
Rodrigues de Brito
,
M. A.
,
2019
, “
An Analytical Model for Transient Heat Transfer in Ground-Coupled Heat Exchangers of Closed-Loop Geothermal Systems
,”
Appl. Therm. Eng.
,
150
, pp.
696
705
.10.1016/j.applthermaleng.2019.01.020
33.
Kays
,
W. M.
, and
London
,
A. L.
,
1984
,
Compact Heat Exchangers
,
McGraw-Hill
,
New York
.
34.
Gao
,
T.
,
Sammakia
,
B.
,
Geer
,
J.
,
Ortega
,
A.
, and
Schmidt
,
R.
,
2014
, “
Transient Effectiveness Characteristics of Cross Flow Heat Exchangers in Data Center Cooling Systems
,”
Thermomechanical Phenomena in Electronic Systems -Proceedings of the Intersociety Conference
,
Institute of Electrical and Electronics Engineers
,
Orlando, FL
, May 27–30, pp.
688
697
.10.1109/ITHERM.2014.6892348
35.
Gao
,
T.
,
Sammakia
,
B.
, and
Geer
,
J.
,
2017
, “
Transient Effectiveness Methods for the Dynamic Characterization of Heat Exchangers
,”
Heat Exchangers—Design, Experiment and Simulation
,
InTech
,
London, UK
.10.5772/67334
36.
Gao
,
T.
,
Sammakia
,
B. G.
,
F. Geer
,
J.
,
Ortega
,
A.
, and
Schmidt
,
R.
,
2014
, “
Dynamic Analysis of Cross Flow Heat Exchangers in Data Centers Using Transient Effectiveness Method
,”
IEEE Trans. Compon., Packag. Manuf. Technol.
,
4
(
12
), pp.
1925
1935
.10.1109/TCPMT.2014.2369256
37.
Žukauskas
,
A.
,
1972
, “
Heat Transfer From Tubes in Crossflow
,”
Adv. Heat Transfer
,
8
(
C
), pp.
93
160
.10.1016/S0065-2717(08)70038-8
38.
Hewitt
,
G. F.
,
1998
,
Heat Exchanger Design Handbook, 1998
,
Begell House
,
New York
.
39.
Binder
,
R. C.
,
1973
,
Fluid Mechanics
,
Prentice Hall
,
Englewood Cliffs, NJ
.
40.
Andersen
,
B. W.
,
1976
,
The Analysis and Design of Pneumatic Systems
,
R.E. Krieger Publication
,
Huntington, NY
.
41.
Shih
,
T.-H.
,
Liou
,
W. W.
,
Shabbir
,
A.
,
Yang
,
Z.
, and
Zhu
,
J.
,
1995
, “
A New K–ϵ Eddy Viscosity Model for High Reynolds Number Turbulent Flows
,”
Comput. Fluids
,
24
(
3
), pp.
227
238
.10.1016/0045-7930(94)00032-T
You do not currently have access to this content.