Abstract

Pressurized solid oxide fuel cell (SOFC) systems are a sustainable opportunity for improvement over conventional systems, featuring high electric efficiency, potential for cogeneration applications, and low carbon emissions. Such systems are usually analyzed in deterministic conditions. However, it is widely demonstrated that such systems are affected significantly by uncertainties, both in component performance and operating parameters. This paper aims to study the propagation of uncertainties related both to the fuel cell (ohmic losses, anode ejector diameter, and fuel gas composition) and the gas turbine cycle characteristics (compressor and turbine efficiencies, recuperator pressure losses). The analysis is carried out on an innovative hybrid system layout, where a turbocharger is used to pressurize the fuel cell, promising better cost effectiveness then a microturbine-based hybrid system, at small scales. Due to plant complexity and high computational effort required by uncertainty quantification methodologies, a response surface (RS) is created. To evaluate the impact of the aforementioned uncertainties on the relevant system outputs, such as overall efficiency and net electrical power, the Monte Carlo method is applied to the RS. Particular attention is focused on the impact of uncertainties on the opening of the turbocharger wastegate valve, which is aimed at satisfying the fuel cell constraints at each operating condition.

References

1.
Cuneo
,
A.
,
Traverso
,
A.
, and
Shahpar
,
S.
,
2017
, “
Comparative Analysis of Methodologies for Uncertainty Propagation and Quantification
,”
ASME
Paper No. GT2017-63238. 10.1115/GT2017-63238
2.
Ghanem
,
R.
,
Owhadi
,
H.
, and
Higdon
,
D.
,
2017
,
Handbook of Uncertainty Quantification
,
Springer
, Berlin.
3.
Marler
,
R. T.
, and
Arora
,
J. S.
,
2004
, “
Survey of Multi-Objective Optimization Methods for Engineering
,”
Struct. Multidiscip. Optim.
,
26
(
6
), pp.
369
395
.10.1007/s00158-003-0368-6
4.
Zhang
,
X.
,
Chan
,
S. H.
,
Li
,
G.
,
Ho
,
H. K.
,
Li
,
J.
, and
Feng
,
Z.
,
2010
, “
A Review of Integration Strategies for Solid Oxide Fuel Cells
,”
J. Power Sources
,
195
(
3
), pp.
685
702
.10.1016/j.jpowsour.2009.07.045
5.
Choudhury
,
A.
,
Chandra
,
H.
, and
Arora
,
A.
,
2013
, “
Application of Solid Oxide Fuel Cell Technology for Power generation-A Review
,”
Renewable Sustainable Energy Rev.
,
20
, pp.
430
442
.10.1016/j.rser.2012.11.031
6.
Mekhilef
,
S.
,
Saidur
,
R.
, and
Safari
,
A.
,
2012
, “
Comparative Study of Different Fuel Cell Technologies
,”
Renewable Sustainable Energy Rev.
,
16
(
1
), pp.
981
989
.10.1016/j.rser.2011.09.020
7.
Buonomano
,
A.
,
Calise
,
F.
,
d'Accadia
,
M. D.
,
Palombo
,
A.
, and
Vicidomini
,
M.
,
2015
, “
Hybrid Solid Oxide Fuel Cells-Gas Turbine Systems for Combined Heat and Power: A Review
,”
Appl. Energy
,
156
, pp.
32
85
.10.1016/j.apenergy.2015.06.027
8.
Fung
,
A.
, and
Zabihian
,
F.
,
2009
, “
A Review on Modeling of Hybrid Solid Oxide Fuel Cell Systems
,”
Int. J. Eng.
,
3
(
2
), pp.
85
119
.https://pdfs.semanticscholar.org/bd4b/b2b347a45c9986f3fc95f9685bcd1c87c349.pdf
9.
Song
,
T. W.
,
Sohn
,
J. L.
,
Kim
,
T. S.
, and
Ro
,
S. T.
,
2006
, “
Performance Characteristics of a MW-Class SOFC/GT Hybrid System Based on a Commercially Available Gas Turbine
,”
J. Power Sources
,
158
(
1
), pp.
361
367
.10.1016/j.jpowsour.2005.09.031
10.
Damo
,
U. M.
,
Ferrari
,
M. L.
,
Turan
,
A.
, and
Massardo
,
A. F.
,
2015
, “
Test Rig for Hybrid System Emulation: New Real-Time Transient Model Validated in a Wide Operative Range
,”
Fuel Cells
,
15
(
1
), pp.
7
14
.10.1002/fuce.201400046
11.
Zhao
,
T. S.
, and
Ni
,
M.
,
2013
,
Solid Oxide Fuel Cell: From Materials to System Modelling
, Royal Society of Chemistry, London.10.1039/9781849737777
12.
Cuneo
,
A.
,
Zaccaria
,
V.
,
Tucker
,
D.
, and
Sorce
,
A.
,
2018
, “
Gas Turbine Size Optimization in a Hybrid System Considering SOFC Degradation
,”
Appl. Energy
,
230
, pp.
855
864
.10.1016/j.apenergy.2018.09.027
13.
Saebea
,
D.
,
Magistri
,
L.
,
Massardo
,
A.
, and
Arpornwichanop
,
A.
,
2017
, “
Cycle Analysis of Solid Oxide Fuel Cell-Gas Turbine Hybrid Systems Integrated Ethanol Steam Reformer: Energy Management
,”
Energy
,
127
, pp.
743
755
.10.1016/j.energy.2017.03.105
14.
Xuan
,
D.
,
Li
,
Z.
,
Kim
,
J.
, and
Kim
,
Y.
,
2009
, “
Optimal Operating Points of PEM Fuel Cell Model With RSM
,”
J. Mech. Sci. Technol.
,
23
(
3
), pp.
717
728
.10.1007/s12206-009-0205-y
15.
Boyaci San
,
F. G.
,
Isik-Gulsac
,
I.
, and
Okur
,
O.
,
2013
, “
Analysis of the Polymer Composite Bipolar Plate Properties on the Performance of PEMFC (Polymer Electrolyte Membrane Fuel Cells) by RSM (Response Surface Methodology)
,”
Energy
,
55
, pp.
1067
1075
.10.1016/j.energy.2013.03.076
16.
Kanani
,
H.
,
Shams
,
M.
,
Hasheminasab
,
M.
, and
Bozorgnezhad
,
A.
,
2015
, “
Model Development and Optimization of Operating Conditions to Maximize PEMFC Performance by Response Surface Methodology
,”
Energy Convers. Manage.
,
93
, pp.
9
22
.10.1016/j.enconman.2014.12.093
17.
Okur
,
O.
,
Alper
,
E.
, and
Almansoori
,
A.
,
2014
, “
Optimization of Catalyst Preparation Conditions for Direct Sodium Borohydride Fuel Cell Using Response Surface Methodology
,”
Energy
,
67
, pp.
97
105
.10.1016/j.energy.2014.01.089
18.
Abrassi
,
A.
,
Cuneo
,
A.
,
Tucker
,
D.
, and
Traverso
,
A.
,
2017
, “
Fuel Cell Microturbine Hybrid System Analysis Through Different Uncertainty Quantification Methods
,”
ASME
Paper No. GT2017-63178. 10.1115/GT2017-63178
19.
Cuneo
,
A.
,
Zaccaria
,
V.
,
Tucker
,
D.
, and
Traverso
,
A.
,
2017
, “
Probabilistic Analysis of a Fuel Cell Degradation Model for Solid Oxide Fuel Cell and Gas Turbine Hybrid Systems
,”
Energy
,
141
, pp.
2277
2287
.10.1016/j.energy.2017.12.002
20.
Subramanyan
,
K.
, and
Diwekar
,
U. M.
,
2005
, “
Characterization and Quantification of Uncertainty in Solid Oxide Fuel Cell Hybrid Power Plants
,”
J. Power Sources
,
142
(
1–2
), pp.
103
116
.10.1016/j.jpowsour.2004.09.030
21.
Malekpour
,
A. R.
,
Niknam
,
T.
,
Pahwa
,
A.
, and
Fard
,
A. K.
,
2013
, “
Multi-Objective Stochastic Distribution Feeder Reconfiguration in Systems With Wind Power Generators and Fuel Cells Using the Point Estimate Method
,”
IEEE Trans. Power Syst.
,
28
(
2
), pp.
1483
1492
.10.1109/TPWRS.2012.2218261
22.
Fadaee
,
M.
, and
Radzi
,
M. A. M.
,
2012
, “
Multi-Objective Optimization of a Stand-Alone Hybrid Renewable Energy System by Using Evolutionary Algorithms: A Review
,”
Renewable Sustainable Energy Rev.
,
16
(
5
), pp.
3364
3369
.10.1016/j.rser.2012.02.071
23.
Henke
,
M.
,
Kallo
,
J.
,
Friedrich
,
K. A.
, and
Bessler
,
W. G.
,
2011
, “
Influence of Pressurisation on SOFC Performance and Durability: A Theoretical Study
,”
Fuel Cells
,
11
(
4
), p.
581
.10.1002/fuce.201000098
24.
Staunton
,
R. H.
, and
Ozpineci
,
B.
,
2003
, “
Microturbine Power Conversion Technology Review
,” U.S. Department of Energy, Washington, DC.
25.
Venkataraman
,
K.
,
Wanat
,
E. C.
, and
Schmidt
,
L. D.
,
2003
, “
Steam Reforming of Methane and Water-Gas Shift in Catalytic Wall Reactors
,”
AIChE J.
,
49
(
5
), p.
1277
.10.1002/aic.690490518
26.
Sunfire Fuel Cells GmbH, “SOFC Stack
—Mk200,” Product Data Sheet, Neubrandenburg, Germany.
27.
Ferrari
,
M. L.
,
De Campo
,
M.
, and
Magistri
,
L.
,
2018
, “
Design and Emulation of a Turbocharged Bio-Fuelled SOFC Plant
,”
ASME
Paper No. GT2018-75026. 10.1115/GT2018-75026
28.
Sorce
,
A.
,
Greco
,
A.
,
Magistri
,
L.
, and
Costamagna
,
P.
,
2014
, “
FDI Oriented Modeling of an Experimental SOFC System, Model Validation and Simulation of Faulty States
,”
Appl. Energy
,
136
(
31
), pp.
894
908
.10.1016/j.apenergy.2014.03.074
29.
Ferrari
,
M. L.
,
Pascenti
,
M.
, and
Massardo
,
A. F.
,
2008
, “
Ejector Model for High Temperature Fuel Cell Hybrid Systems: Experimental Validation at Steady-State and Dynamic Conditions
,”
J. Fuel Cell Sci. Technol.
,
5
(
4
), p.
041005
.10.1115/1.2890102
30.
Greco
,
A.
,
Sorce
,
A.
,
Littwin
,
R.
,
Costamagna
,
P.
, and
Magistri
,
L.
,
2014
, “
Reformer Faults in SOFC Systems: Experimental and Modeling Analysis, and Simulated Fault Maps
,”
Int. J. Hydrogen Energy
,
39
(
36
), pp.
21700
21713
.10.1016/j.ijhydene.2014.09.063
31.
Traverso
,
A.
,
Massardo
,
A. F.
, and
Scarpellini
,
R.
,
2006
, “
Externally Fired Micro-Gas Turbine: Modelling and Experimental Performance
,”
Appl. Thermal Eng.
,
26
(
16
), pp.
1935
1941
.10.1016/j.applthermaleng.2006.01.013
32.
Magistri
,
L.
,
Bozzo
,
R.
,
Costamagna
,
P.
, and
Massardo
,
A. F.
,
2004
, “
Simplified Versus Detailed Solid Oxide Fuel Cell Reactor Models and Influence on the Simulation of the Design Point Performance of Hybrid Systems
,”
ASME J. Eng. Gas Turbines Power
,
126
(
3
), pp.
516
523
.10.1115/1.1719029
33.
Chan
,
S. H.
,
Khor
,
K. A.
, and
Xia
,
Z. T.
,
2001
, “
A Complete Polarization Model of a Solid Oxide Fuel Cell and Its Sensitivity to the Change of Cell Component Thickness
,”
J. Power Sources
,
93
(
1–2
), pp.
130
140
.10.1016/S0378-7753(00)00556-5
34.
Ferrari
,
M. L.
,
2015
, “
Advanced Control Approach for Hybrid Systems Based on Solid Oxide Fuel Cells
,”
Appl. Energy
,
145
, pp.
364
373
.10.1016/j.apenergy.2015.02.059
35.
Myers
,
R. H.
, and
Montgomery
,
D. C.
,
2002
,
Response Surface Methodology: Process and Product Optimization Using Designed Experiments
,
Wiley
,
New York
.
36.
Law
,
AL.
, and
Kelton
,
W. D.
,
1991
,
Simulation Modeling and Analysis
,
Mc Graw Hill
, New York.
37.
Kleijnen
,
J. P. C.
, and
Sargent
,
R. G.
,
2000
, “
A Methodology for Fitting and Validating Metamodels in Simulation
,”
Eur. J. Oper. Res.
,
120
(
1
), pp.
14
29
.10.1016/S0377-2217(98)00392-0
38.
Mäkelä
,
M.
,
2017
, “
Experimental Design and Response Surface Methodology in Energy Applications: A Tutorial Review
,”
Energy Convers. Manage.
,
151
, pp.
630
640
.10.1016/j.enconman.2017.09.021
39.
Kleijnen
,
J. P. C.
,
2005
, “
An Overview of the Design and Analysis of Simulation Experiments for Sensitivity Analysis
,”
Eur. J. Oper. Res.
,
164
(
2
), pp.
287
300
.10.1016/j.ejor.2004.02.005
40.
Montgomery
,
D. C.
,
2012
,
Design and Analysis of Experiments
,
Wiley
, Hoboken, NJ.
41.
Taguchi
,
G.
, and
Yokoyama
,
Y.
,
1993
, “
Taguchi Methods: Design of Experiments
,” American Supplier Institute, Dearborn, MI, in conjunction with the Japanese Standards Association, Tokyo, Japan.
42.
Kaufman
,
M.
,
Balabanov
,
V.
,
Burgee
,
S. L.
,
Giunta
,
A. A.
,
Grossman
,
B.
,
Haftka
,
R. T.
,
Mason
,
W. H.
, and
Watson
,
L. T.
,
1996
, “
Variable-Complexity Response Surface Approximations for Wing Structural Weight in HSCT Design
,”
Comput. Mech.
,
18
(
2
), pp.
112
126
.10.1007/BF00350530
43.
Panis
,
R. P.
,
Myers
,
R. H.
, and
Houck
,
E. C.
,
1994
, “
Combining Regression Diagnostics With Simulation Metamodels
,”
Eur. J. Oper. Res.
,
73
(
1
), pp.
85
94
.10.1016/0377-2217(94)90146-5
44.
HiFlux,
2017
, “
HiFlux Recuperators
,” Hounslow, UK, accessed Oct. 30, 2018, http://hiflux.co.uk/applications/microturbine-recuperators/
45.
Bensmann
,
A.
,
Hanke-Rauschenbach
,
R.
,
Heyer
,
R.
,
Kohrs
,
F.
,
Benndorf
,
D.
,
Reichl
,
U.
, and
Sundmacher
,
K.
,
2014
, “
Biological Methanation of Hydrogen Within Biogas Plants: A Model-Based Feasibility Study
,”
Appl. Energy
,
134
, pp.
413
425
.10.1016/j.apenergy.2014.08.047
46.
Baxter
,
R.
,
Hastings
,
N.
,
Law
,
A.
, and
Glass
,
E. J.
,
2008
,
The Cambridge Dictionary of Statistics
,
Cambridge, UK
.
47.
Wasserstein
,
R. L.
, and
Lazar
,
N. A.
,
2016
, “
The ASA's Statement on p-Values: Context, Process, Purpose
,”
Am. Stat.
,
70
(
2
), pp.
129
133
.10.1080/00031305.2016.1154108
48.
Harel
,
O.
,
2009
, “
The Estimation of R2 and Adjusted R2 in Incomplete Data Sets Using Multiple Imputation
,”
J. Appl. Stat.
,
36
(
10
), pp.
1109
1118
.10.1080/02664760802553000
49.
Saqib
,
M.
,
Mumtaz
,
M. W.
,
Mahmood
,
A.
, and
Abdullah
,
M. I.
,
2012
, “
Optimized Biodiesel Production and Environmental Assessment of Produced Biodiesel
,”
Biotechnol. Bioprocess Eng.
,
17
(
3
), pp.
617
623
.10.1007/s12257-011-0569-6
50.
Lemieux
,
C.
,
2009
,
Monte Carlo and Quasi Monte Carlo
,”
Springer
, Berlin.
51.
Cassettari
,
L.
,
Mosca
,
R.
, and
Revetria
,
R.
,
2012
, “
Monte Carlo Simulation Models Evolving in Replicated Runs: A Methodology to Choose the Optimal Experimental Sample Size
,”
Math. Probl. Eng.
,
2012
, p.
463873
.10.1155/2012/463873
You do not currently have access to this content.