Fouling affects gas turbine operation, and airborne or fuel contaminants, under certain conditions, become very likely to adhere to surfaces if impact takes place. Particle sticking implies the change in shape in terms of roughness of the impinged surface. The consequences of these deposits could be dramatic: these effects can shut an aircraft engine down or derate a land-based power unit. This occurrence may happen due to the reduction of the compressor flow rate and the turbine capacity, caused by a variation in the HPT nozzle throat area (geometric blockage due to the thickness of the deposited layer and the aerodynamic blockage due to the increased roughness, and in turn boundary layer). Several methods to quantify particle sticking have been proposed in literature so far, and the experimental data used for their validation vary in a wide range of materials and conditions. The experimental analyzes have been supported by (and have given inspiration to) increasingly realistic mathematical models. Experimental tests have been carried out on (i) a full scale gas turbine unit, (ii) wind tunnel testing or hot gas facilities using stationary cascades, able to reproduce the same conditions of gas turbine nozzle operation and finally, (iii) wind tunnel testing or hot gas facilities using a coupon as the target. In this review, the whole variety of experimental tests performed are gathered and classified according to composition, size, temperature, and particle impact velocity. Using particle viscosity and sticking prediction models, over seventy (70) tests are compared with each other and with the model previsions providing a useful starting point for a comprehensive critical analysis. Due to the variety of test conditions, the related results are difficult to be pieced together due to differences in particle material and properties. The historical data of particle deposition obtained over thirty (30) years are classified using particle kinetic energy and the ratio between particle temperature and its softening temperature. Qualitative thresholds for the distinction between particle deposition, surface erosion, and particle break-up, based on particle properties and impact conditions, are identified. The outcome of this paper can be used for further development of sticking models or as a starting point for new insight into the problem.

References

1.
Suman
,
A.
,
Morini
,
M.
,
Aldi
,
N.
,
Casari
,
N.
,
Pinelli
,
M.
, and
Spina
,
P. R.
,
2017
, “
A Compressor Fouling Review Based on an Historical Survey of Asme Turbo Expo Papers
,”
ASME J. Turbomach.
,
139
(
4
), p.
041005
.
2.
Clarkson
,
R. J.
,
Majewicz
,
E. J. E.
, and
Mack
,
P.
,
2016
, “
A Re-Evaluation of the 2010 Quantitative Understanding of the Effects Volcanic Ash Has on Gas Turbine Engines
,”
Proc. Inst. Mech. Eng., Part G: J. Aerosp. Eng.
,
230
(
12
), pp.
2274
2291
.
3.
Dunn
,
M. G.
,
2012
, “
Operation of Gas Turbine Engines in an Environment Contaminated With Volcanic Ash
,”
ASME J. Turbomach.
,
134
(
5
), p.
051001
.
4.
De Giorgi
,
M. G.
,
Campilongo
,
S.
, and
Ficarella
,
A.
,
2015
, “
Predictions of Operational Degradation of the Fan Stage of an Aircraft Engine Due to Particulate Ingestion
,”
ASME J. Eng. Gas Turbines Power
,
137
(
5
), p.
052603
.
5.
Allaby
,
M.
,
2013
,
A Dictionary of Geology and Earth Sciences
,
Oxford University Press
,
Oxford, UK
.
6.
Cohn
,
A.
,
1982
, “
Effect of Gas and Metal Temperatures on Gas Turbine Deposition
,”
ASME
Paper No. 82-JPGC-GT-4.
7.
Whitlow
,
G. A.
,
Lee
,
S. Y.
,
Mulik
,
P. R.
,
Wenglarz
,
R. A.
,
Sherlock
,
T. P.
, and
Cohn
,
A.
,
1983
, “
Combustion Turbine Deposition Observations From Residual and Simulated Residual Oil Studies
,”
ASME J. Eng. Gas Turbines Power
,
105
(
1
), pp.
88
96
.
8.
Wenglarz
,
R. A.
, and
Cohn
,
A.
,
1983
, “
Turbine Deposition Evaluations Using Simplified Tests
,”
ASME
Paper No. 83-GT-115.
9.
Wenglarz
,
R. A.
,
1987
, “
Turbine Disposition, Erosion and Corrosion Evaluations Using a Simplified Test Approach
,”
ASME
Paper No. 87-GT-214.
10.
Wenglarz
,
R. A.
,
1987
, “
Direct Coal-Fueled Combustion Turbines
,”
ASME
Paper No. 87-GT-269.
11.
Kimura
,
S. G.
,
Spiro
,
C. L.
, and
Chen
,
C. C.
,
1987
, “
Combustion and Deposition in Coal-Fired Turbines
,”
ASME J. Eng. Gas Turbines Power
,
109
(
3
), pp.
319
324
.
12.
Spiro
,
C. L.
,
Kimura
,
S. G.
, and
Chen
,
C. C.
,
1987
, “
Ash Behavior During Combustion and Deposition in Coal-Fueled Gas Turbines
,”
ASME J. Eng. Gas Turbines Power
,
109
(
3
), pp.
325
330
.
13.
Wenglarz
,
R. A.
, and
Fox
,
R. G.
, Jr.
,
1990
, “
Physical Aspects of Deposition From Coal-Water Fuels Under Gas Turbine Conditions
,”
ASME J. Eng. Gas Turbines Power
,
112
(
1
), pp.
9
14
.
14.
Wenglarz
,
R. A.
, and
Fox
,
R. G.
, Jr.
,
1990
, “
Chemical Aspects of Deposition/Corrosion From Coal-Water Fuels Under Gas Turbine Conditions
,”
ASME J. Eng. Gas Turbines Power
,
112
(
1
), pp.
1
8
.
15.
Wenglarz
,
R. A.
,
1992
, “
An Approach for Evaluation of Gas Turbine Deposition
,”
ASME J. Eng. Gas Turbines Power
,
114
(
2
), pp.
230
234
.
16.
Chin
,
J. S.
, and
Lefebvre
,
A. H.
,
1993
, “
Influence of Flow Conditions on Deposits From Heated Hydrocarbon Fuels
,”
ASME J. Eng. Gas Turbines Power
,
115
(
3
), pp.
433
438
.
17.
Nagarajan
,
R.
, and
Anderson
,
R. J.
,
1988
, “
Effect of Coal Constituents on the Liquid-Assisted Capture of Impacting Ash Particles in Direct Coal-Fired Gas Turbines
,”
ASME
Paper No. 88-GT-192.
18.
Dunn
,
M. G.
,
Padova
,
C.
,
Moeller
,
J. E.
, and
Adams
,
R. M.
,
1987
, “
Performance Deterioration of a Turbofan and a Turbojet Engine Upon Exposure to a Dust Environment
,”
ASME J. Eng. Gas Turbines Power
,
109
(
3
), pp.
336
343
.
19.
Kim
,
J.
,
Dunn
,
M. G.
,
Baran
,
A. J.
,
Wade
,
D. P.
, and
Tremba
,
E. L.
,
1993
, “
Deposition of Volcanic Materials in the Hot Sections of Two Gas Turbine Engines
,”
ASME J. Eng. Gas Turbines Power
,
115
(
3
), pp.
641
651
.
20.
Dunn
,
M. G.
,
Baran
,
A. J.
, and
Miatech
,
J.
,
1996
, “
Operation of Gas Turbine Engines in Volcanic Ash Clouds
,”
ASME J. Eng. Gas Turbines Power
,
118
(
4
), pp.
724
731
.
21.
Shinozaki
,
M.
,
Roberts
,
K. A.
,
Van De Goor
,
B.
, and
William Clyne
,
T.
,
2013
, “
Deposition of Ingested Volcanic Ash on Surfaces in the Turbine of a Small Jet Engine
,”
Adv. Eng. Mater.
,
15
(
10
), pp.
986
994
.
22.
Anderson
,
R. J.
,
Romanowsky
,
C. J.
, and
France
,
J. E.
,
1984
, “
The Adherence of Ash Particles from the Combustion of Micronized Coal
,” Morgantown Energy Technology Center, Morgantown, WV, USA, Report No. DOE/METC-85/2007.
23.
Ross
,
J. S.
,
Anderson
,
R. J.
, and
Nagarajan
,
R.
,
1988
, “
Effect of Sodium on Deposition in a Simulated Combustion Gas Turbine Environment
,”
Energy Fuels
,
2
(
3
), pp.
282
289
.
24.
Anderson
,
R. J.
,
Logan
,
R. G.
,
Meyer
,
C. T.
, and
Dennis
,
R. A.
,
1990
, “
A Combustion/Deposition Entrained Reactor for High-Temperature/Pressure Studies of Coal and Coal Minerals
,”
Rev. Sci. Instrum.
,
61
(
4
), pp.
1294
1302
.
25.
Richards
,
G. A.
,
Logan
,
R. G.
,
Meyer
,
C. T.
, and
Anderson
,
R. J.
,
1992
, “
Ash Deposition at Coal-Fired Gas Turbine Conditions: Surface and Combustion Temperature Effects
,”
ASME J. Eng. Gas Turbines Power
,
114
(
1
), pp.
132
138
.
26.
Weaver
,
M. M.
,
Dunn
,
M. G.
, and
Heffernan
,
T.
,
1996
, “
Experimental Determination of the Influence of Foreign Particle Ingestion on the Behavior of Hot-Section Components Including Lamilloy
,”
ASME
Paper No. 96-GT-337.
27.
Jensen
,
J. W.
,
Squire
,
S. W.
,
Bons
,
J. P.
, and
Fletcher
,
T. H.
,
2005
, “
Simulated Land-Based Turbine Deposits Generated in an Accelerated Deposition Facility
,”
ASME J. Turbomach.
,
127
(
3
), pp.
462
470
.
28.
Bons
,
J. P.
,
Crosby
,
J.
,
Wammack
,
J. E.
,
Bentley
,
B. I.
, and
Fletcher
,
T. H.
,
2007
, “
High-Pressure Turbine Deposition in Land-Based Gas Turbines From Various Synfuels
,”
ASME J. Eng. Gas Turbines Power
,
129
(
1
), pp.
135
143
.
29.
Wammack
,
J. E.
,
Crosby
,
J.
,
Fletcher
,
D.
,
Bons
,
J. P.
, and
Fletcher
,
T. H.
,
2008
, “
Evolution of Surface Deposits on a High Pressure Turbine Blade—Part I: Physical Characteristics
,”
ASME J. Turbomach.
,
130
(
2
), p.
021020
.
30.
Crosby
,
J. M.
,
Lewis
,
S.
,
Bons
,
J. P.
,
Ai
,
W.
, and
Fletcher
,
T. H.
,
2008
, “
Effects of Temperature and Particle Size on Deposition in Land Based Turbines
,”
ASME J. Eng. Gas Turbines Power
,
130
(
5
), p.
051503
.
31.
Ai
,
W.
,
Laycock
,
R. G.
,
Rappleye
,
D. S.
,
Fletcher
,
T. H.
, and
Bons
,
J. P.
,
2011
, “
Effect of Particle Size and Trench Configuration on Deposition From Fine Coal Fly ash Near Film Cooling Holes
,”
Energy Fuels
,
25
(
3
), pp.
1066
1076
.
32.
Ai
,
W.
,
Murray
,
N.
,
Fletcher
,
T. H.
,
Harding
,
S.
,
Lewis
,
S.
, and
Bons
,
J. P.
,
2012
, “
Deposition Near Film Cooling Holes on a High Pressure Turbine Vane
,”
ASME J. Turbomach.
,
134
(
4
), p.
041013
.
33.
Ai
,
W.
,
Murray
,
N.
,
Fletcher
,
T. H.
,
Harding
,
S.
, and
Bons
,
J. P.
,
2012
, “
Effect of Hole Spacing on Deposition of Fine Coal Fly ash Near Film Cooling Holes
,”
ASME J. Turbomach.
,
134
(
4
), p.
041021
.
34.
Laycock
,
R. G.
, and
Fletcher
,
T. H.
,
2013
, “
Time-Dependent Deposition Characteristics of Fine Coal Fly Ash in a Laboratory Gas Turbine Environment.
,”
ASME J. Turbomach.
,
135
(
2
), p.
021003
.
35.
Laycock
,
R.
, and
Fletcher
,
T. H.
,
2016
, “
Independent Effects of Surface and Gas Temperature on Coal Fly Ash Deposition in Gas Turbines at Temperatures Up to 1400 °C
,”
ASME J. Eng. Gas Turbines Power
,
138
(
2
), p.
2429919
.
36.
Boulanger
,
A.
,
Patel
,
H.
,
Hutchinson
,
J.
,
DeShong
,
W.
,
Xu
,
W.
,
Ng
,
W.
, and
Ekkad
,
S.
,
2016
, “
Preliminary Experimental Investigation of Initial Onset of Sand Deposition in the Turbine Section of Gas Turbines
,”
ASME
Paper No. GT2016-56059.
37.
Dean
,
J.
,
Taltavull
,
C.
, and
Clyne
,
T.
,
2016
, “
Influence of the Composition and Viscosity of Volcanic Ashes on Their Adhesion Within Gas Turbine Aeroengines
,”
Acta Mater.
,
109
, pp.
8
16
.
38.
Giehl
,
C.
,
Brooker
,
R. A.
,
Marxer
,
H.
, and
Nowak
,
M.
,
2017
, “
An Experimental Simulation of Volcanic Ash Deposition in Gas Turbines and Implications for Jet Engine Safety
,”
Chem. Geol.
,
461
, pp.
160
170
.
39.
Taltavull
,
C.
,
Dean
,
J.
, and
Clyne
,
T. W.
,
2016
, “
Adhesion of Volcanic Ash Particles Under Controlled Conditions and Implications for Their Deposition in Gas Turbines
,”
Adv. Eng. Mater.
,
18
(
5
), pp.
803
813
.
40.
Barker
,
B.
,
Hsu
,
K.
,
Varney
,
B.
,
Boulanger
,
A.
,
Hutchinson
,
J.
, and
Ng
,
W. F.
,
2017
, “
An Experiment-Based Sticking Model for Heated Sand
,”
ASME
Paper No. GT2017-64421.
41.
Boulanger
,
A.
,
Hutchinson
,
J.
,
Ng
,
W. F.
,
Ekkad
,
S. V.
,
Keefe
,
M. J.
,
Xu
,
W.
,
Barker
,
B.
, and
Hsu
,
K.
,
2017
, “
Experimental Based Empirical Model of the Initial Onset of Sand Deposits on hastelloy-X from 1000 °C to 1100 °C Using Particle Tracking
,”
ASME
Paper No. GT2017-64480.
42.
Raj
,
R.
,
1983
, “
Deposition Results of a Transpiration Air-Cooled Turbine Vane Cascade in a Contaminated Gas Stream
,”
ASME J. Eng. Gas Turbines Power
,
105
(
4
), pp.
826
833
.
43.
Raj
,
R.
, and
Moskowitz
,
S.
,
1984
, “
Experimental Studies of Deposition by Electrostatic Charge on Turbine Blades
,”
ASME
Paper No. 84-GT-159.
44.
Smith
,
C.
,
Barker
,
B.
,
Clum
,
C.
, and
Bons
,
J. P.
,
2010
, “
Deposition in a Turbine Cascade With Combusting Flow
,”
ASME
Paper No. GT2010-22855.
45.
Webb
,
J.
,
Casaday
,
B.
,
Barker
,
B.
,
Bons
,
J. P.
,
Gledhill
,
A. D.
, and
Padture
,
N. P.
,
2012
, “
Coal Ash Deposition on Nozzle Guide Vanes—Part I: Experimental Characteristics of Four Coal Ash Types
,”
ASME J. Turbomach.
,
135
(
2
), p.
021033
.
46.
Casaday
,
B. P.
,
Prenter
,
R.
,
Bonilla
,
C.
,
Lawrence
,
M.
,
Clum
,
C.
,
Ameri
,
A.
, and
Bons
,
J. P.
,
2013
, “
Deposition With Hot Streaks in an Uncooled Turbine Vane Passage
,”
ASME J. Turbomach.
,
136
(
4
), p.
041017
.
47.
Prenter
,
R.
,
Whitaker
,
S. M.
,
Ameri
,
A.
, and
Bons
,
J. P.
,
2014
, “
The Effects of Slot Film Cooling on Deposition on a Nozzle Guide Vane
,”
ASME
Paper No. GT2014-27171.
48.
Whitaker
,
S. M.
,
Prenter
,
R.
, and
Bons
,
J. P.
,
2015
, “
T the Effect of Freestream Turbulence on Deposition for Nozzle Guide Vanes
,”
ASME J. Turbomach.
,
137
(
12
), p.
121001
.
49.
Lundgreen
,
R.
,
Sacco
,
C.
,
Prenter
,
R.
, and
Bons
,
J. P.
,
2016
, “
Temperature Effects on Nozzle Guide Vane Deposition in a New Turbine Cascade Rig
,”
ASME
Paper No. GT2016-57560.
50.
Wang
,
X. Y.
,
Pu
,
J.
,
Yuan
,
R. M.
, and
Wang
,
J. H.
,
2016
, “
Combined Influence of Surface Deposition and Hole-Blockage on Film-Cooling Performances
,”
ASME
Paper No. GT2016-56902.
51.
Wylie
,
S.
,
Bucknell
,
A.
,
Forsyth
,
P.
,
McGilvray
,
M.
, and
Gillespie
,
D. R. H.
,
2017
, “
Reduction in Flow Parameter Resulting From Volcanic Ash Deposition in Engine Representative Cooling Passages
,”
ASME J. Turbomach.
,
139
(
3
), p.
031008
.
52.
Whitaker
,
S. M.
,
Lundgreen
,
R. K.
, and
Bons
,
J. P.
,
2017
, “
Effects of Metal Surface Temperature on Deposition-Induced Flow Blockage in a Vane Leading Edge Cooling Geometry
,”
ASME
Paper No. GT2017-64946.
53.
Whitaker
,
S. M.
,
Peterson
,
B.
,
Miller
,
A. F.
, and
Bons
,
J. P.
,
2016
, “
The Effect of Particle Loading, Size, and Temperature on Deposition in a Vane Leading Edge Impingement Cooling Geometry
,”
ASME
Paper No. GT2016-57413.
54.
Bunker
,
R. S.
,
2017
, “
Evolution of Turbine Cooling
,”
ASME
Paper No. GT2017-63205.
55.
Kotwal
,
R.
, and
Tabakoff
,
W.
,
1981
, “
A New Approach for Erosion Prediction Due to Fly Ash
,”
J. Eng. Power
,
103
(
2
), pp.
265
270
.
56.
Tabakoff
,
W.
,
1984
, “
Review-Turbomachinery Performance Deterioration Exposed to Solid Particulates Environment
,”
ASME J. Fluids Eng.
,
106
(
2
), pp.
125
134
.
57.
Tabakoff
,
W.
,
Hamed
,
A.
,
Metwally
,
M.
, and
Pasin
,
M.
,
1992
, “
High-Temperature Erosion Resistance of Coatings for Gas Turbine
,”
ASME J. Eng. Gas Turbines Power
,
114
(
2
), pp.
242
249
.
58.
Mezheritsky
,
A. D.
, and
Sudarev
,
A. V.
,
1990
, “
The Mechanism of Fouling and the Cleaning Technique in Application to Flow Parts of the Power Generation Plant Compressors
,”
ASME
Paper No. 90-GT-103.
59.
Senior
,
C. L.
, and
Srinivasachar
,
S.
,
1995
, “
Viscosity of Ash Particles in Combustion Systems for Prediction of Particle Sticking
,”
Energy Fuels
,
9
(
2
), pp.
277
283
.
60.
Ahluwalia
,
R. K.
,
Im
,
K. H.
,
Chuang
,
C. F.
, and
Hajduk
,
J. C.
,
1986
, “
Particle and Vapor Deposition in Coal-Fired Gas Turbines
,”
ASME
Paper No. 86-GT-239.
61.
Ahluwalia
,
R. K.
,
Im
,
K. H.
, and
Wenglarz
,
R. A.
,
1989
, “
Flyash Adhesion in Simulated Coal-Fired Gas Turbine Environment
,”
ASME J. Eng. Gas Turbines Power
,
111
(
4
), pp.
672
678
.
62.
Sreedharan
,
S. S.
, and
Tafti
,
D. K.
,
2011
, “
Composition Dependent Model for the Prediction of Syngas Ash Deposition in Turbine Gas Hotpath
,”
Int. J. Heat Fluid Flow
,
32
(
1
), pp.
201
211
.
63.
Singh
,
S.
, and
Tafti
,
D. K.
,
2016
, “
Prediction of Sand Transport and Deposition in a Two-Pass Internal Cooling Duct
,”
ASME J. Eng. Gas Turbines Power
,
138
(
7
), p.
072606
.
64.
Srinivasachar
,
S.
,
Helble
,
J. J.
, and
Boni
,
A.
,
1991
, “
An Experimental Study of the Inertial Deposition of Ash Under Coal Combustion Conditions
,”
Symp. (Int.) Combust.
,
23
(
1
), pp.
1305
1312
.
65.
Jiang
,
L. Y.
,
Han
,
Y.
, and
Patnaik
,
P.
, 2018, “
Characteristics of Volcanic Ash in a Gas Turbine Combustor and Nozzle Guide Vanes
,” ASME J. Eng. Gas Turbines Power,
140
(7), p. 071502.
66.
Brach
,
R. M.
, and
Dunn
,
P. F.
,
1992
, “
A Mathematical Model of the Impact and Adhesion of Microspheres
,”
Aerosol Sci. Technol.
,
16
(
1
), pp.
51
64
.
67.
Johnson
,
K. L.
,
Kendall
,
K.
, and
Roberts
,
A. D.
,
1971
, “
Surface Energy and the Contact of Elastic Solids
,”
Proc. R. Soc. A
,
324
(
1558
), pp.
301
313
.
68.
El-Batsh
,
H.
,
2001
, “
Modeling Particle Deposition on Compressor and Turbine Blade Surfaces
,” Ph.D. thesis, Vienna University of Technology, Vienna, Austria.
69.
Ai
,
W.
,
2009
, “
Deposition of Particulate from Coal-Derived Syngas on Gas Turbine Blades Near Film Cooling Holes
,” Ph.D. thesis, Brigham Young University, Provo, UT.
70.
Bons
,
J. P.
,
Prenter
,
R.
, and
Whitaker
,
S.
,
2017
, “
A Simple Physics-Based Model for Particle Rebound and Deposition in Turbomachinery
,”
ASME J. Turbomach.
,
139
(
8
), p.
081009
.
71.
Prenter
,
R.
,
Ameri
,
A.
, and
Bons
,
J. P.
,
2017
, “
Computational Simulation of Deposition in a Cooled High-Pressure Turbine Stage With Hot Streaks
,”
ASME J. Turbomach.
,
139
(
9
), p.
091005
.
72.
Forsyth
,
P. R.
,
Gillespie
,
D. R. H.
, and
McGilvray
,
M.
,
2018
, “
Development and Applications of a Coupled Particle Deposition—Dynamic Mesh Morphing Approach for the Numerical Simulation of Gas Turbine Flows
,”
ASME J. Eng. Gas Turbines Power
,
140
(
2
), p.
022603
.
73.
Agati
,
G.
,
Borello
,
D.
,
Rispoli
,
F.
, and
Venturini
,
P.
,
2016
, “
An Innovative Approach to Model Temperature Influence on Particle Deposition in Gas Turbines
,”
ASME
Paper No. GT2016-57997.
74.
Yu
,
K.
, and
Tafti
,
D.
,
2017
, “
Size and Temperature Dependent Deposition Model of Micro-Sized Sand Particles
,”
ASME
Paper No. GT2017-63792.
75.
Yu
,
K.
, and
Tafti
,
D.
,
2016
, “
Impact Model for Micrometer-Sized Sand Particles
,”
Powder Technol.
,
294
, pp.
11
21
.
76.
Mysen
,
B. O.
,
1988
, “
Structure and Properties of Silicate Melts
,”
Structure and Properties of Silicate Melts
,
Elsevier
,
New York
, p.
368
.
77.
Mills
,
K. C.
, and
Sridhar
,
S.
,
1999
, “
Viscosities of Ironmaking and Steelmaking Slags
,”
Ironmaking Steelmaking
,
26
(
4
), pp.
262
268
.
78.
Duffy
,
J. A.
, and
Ingram
,
M. D.
,
1975
, “
Optical Basicity—IV: Influence of Electronegativity on the Lewis Basicity and Solvent Properties of Molten Oxyanion Salts and Glasses
,”
J. Inorg. Nucl. Chem.
,
37
(
5
), pp.
1203
1206
.
79.
Zhang
,
G.-H.
, and
Chou
,
K.-C.
,
2010
, “
Simple Method for Estimating the Electrical Conductivity of Oxide Melts With Optical Basicity
,”
Metall. Mater. Trans. B: Process Metall. Mater. Process. Sci.
,
41
(
1
), pp.
131
136
.
80.
Giordano
,
D.
,
Russell
,
J. K.
, and
Dingwell
,
D. B.
,
2008
, “
Viscosity of Magmatic Liquids: A Model
,”
Earth Planet. Sci. Lett.
,
271
(
1–4
), pp.
123
134
.
81.
ASTM
,
2004
, “
Standard Test Method for Fusibility of Coal and Coke Ash
,” American Society for Testing and Materials International, West Conshohocken, PA, Standard No.
ASTM D1857-04
.
82.
Yin
,
C.
,
Luo
,
Z.
,
Ni
,
M.
, and
Cen
,
K.
,
1998
, “
Predicting Coal Ash Fusion Temperature With a Back-Propagation Neural Network Model
,”
Fuel
,
77
(
15
), pp.
1777
1782
.
83.
Laycock
,
R. G.
, and
Fletcher
,
T. H.
,
2017
, “
Erratum: Time-Dependent Deposition Characteristics of Fine Coal Fly Ash in a Laboratory Gas Turbine Environment [ASME J. Turbomach., 135, 2, (2012) (021003). DOI: 10.1115/1.4006639]
,”
ASME J. Turbomach.
,
139
(
12
), p.
127001
.
84.
Laycock
,
R. G.
, and
Fletcher
,
T. H.
, 2017, “
Erratum: ‘Erratum: ‘Time-Dependent Deposition Characteristics of Fine Coal Fly Ash in a Laboratory Gas Turbine Environment' [ASME J. Turbomach., 2012, 135(2), p. 021003; DOI:10.1115/1.4006639]' [ASME. J. Turbomach., 2017, 139(12), p. 127001; DOI: 10.1115/1.4037911]
,”
ASME J. Turbomach.
,
140
(4), p. 047001.
85.
Bottinga
,
Y.
,
Weill
,
D.
, and
Richet
,
P.
,
1982
, “
Density Calculations for Silicate Liquids—I: Revised Method for Aluminosilicate Compositions
,”
Geochim. Cosmochim. Acta
,
46
(
6
), pp.
909
919
.
86.
Mills
,
K. C.
, and
Keene
,
B. J.
,
1987
, “
Physical Properties of BOS Slags
,”
Int. Mater. Rev.
,
32
(
1
), pp.
1
120
.
87.
Ciprian
,
D.
, and
Grigore
,
B.
,
2013
, “
Classification and Characterization of Basalts of Branisca and Dobra—Romania, for Capitalization
,” 1st International Conference on Industrial and Manufacturing Technologies (
INMAT '13
), Vouliagmeni, Athens, Greece May 14–16, pp.
64
69
.
88.
Taylor
,
H. E.
, and
Lichte
,
F. E.
,
1980
, “
Chemical Composition of Mount St. Helens Volcanic Ash
,”
Geophys. Res. Lett.
,
7
(
11
), pp.
949
952
.
89.
Guha
,
A.
,
2008
, “
Transport and Deposition of Particles in Turbulent and Laminar Flow
,”
Annu. Rev. Fluid Mech.
,
40
(
1
), pp.
311
341
.
90.
Bell
,
I. H.
,
Wronski
,
J.
,
Quoilin
,
S.
, and
Lemort
,
V.
,
2014
, “
Pure and Pseudo-Pure Fluid Thermophysical Property Evaluation and the Open-Source Thermophysical Property Library CoolProp
,”
Ind. Eng. Chem. Res.
,
53
(
6
), pp.
2498
508
.
91.
Kueppers
,
U.
,
Cimarelli
,
C.
,
Hess
,
K.-U.
,
Taddeucci
,
J.
,
Wadsworth
,
F. B.
, and
Dingwell
,
D. B.
,
2014
, “
The Thermal Stability of Eyjafjallajökull Ash Versus Turbine Ingestion Test Sands
,”
J. Appl. Volcanol.
,
3
(
1
), p.
4
.
92.
Bas
,
M. J. L.
,
Maitre
,
R. W. L.
,
Streckeisen
,
A.
, and
Zanettin
,
B.
,
1986
, “
A Chemical Classification of Volcanic Rocks Based on the Total Alkali-Silica Diagram
,”
J. Petrol.
,
27
(
3
), pp.
745
750
.
93.
Seetharaman
,
S.
,
Mukai
,
K.
, and
Sichen
,
D.
,
2005
, “
Viscosities of slags - An Overview
,”
Steel Res. Int.
,
76
(
4
), pp.
267
278
.
94.
Hsieh
,
P.
,
Kwong
,
K. S.
, and
Bennett
,
J.
,
2016
, “
Correlation Between the Critical Viscosity and Ash Fusion Temperatures of Coal Gasifier Ashes
,”
Fuel Process. Technol.
,
142
, pp.
13
26
.
95.
ASTM
,
2015
, “
Standard Test Methods for Rheological Properties of Non-Newtonian Materials by Rotational Viscometer
,” American Society for Testing and Materials International, West Conshohocken, PA, Standard No.
ASTM D 2196-15
.
96.
Mills
,
K. C.
,
Hayashi
,
M.
,
Wang
,
L.
, and
Watanabe
,
T.
,
2014
, “
The Structure and Properties of Silicate Slags
,”
Treatise on Process Metallurgy: Volume 1 Process fundamentals
,
S
.
Seetharaman
,
A.
McLean
, and
R
.
Guthrie
, eds.,
Elsevier
,
Amsterdam
, pp.
149
286
.
97.
Vargas
,
S.
,
Frandsen Fine Coal Flyash
,
F. J.
, and
Dam-Johansen
,
K.
,
2001
, “
Rheological Properties of High-Temperature Melts of Coal Ashes and Other Silicates
,”
Prog. Energy Combust. Sci.
,
27
(
3
), pp.
237
429
.
98.
Singh
,
T.
, and
Sundararajan
,
G.
,
1990
, “
The Erosion Behavior of 304 Stainless Steel at Elevated Temperatures
,”
Metall. Trans. A
,
21
(
12
), pp.
3187
3199
.
99.
Sundararajan
,
G.
, and
Roy
,
M.
,
1997
, “
Solid Particle Erosion Behaviour of Metallic Materials at Room and Elevated Temperatures
,”
Tribol. Int.
,
30
(
5
), pp.
339
359
.
100.
Wellman
,
R. G.
, and
Nicholls
,
J. R.
,
2004
, “
High Temperature Erosion-Oxidation Mechanisms, Maps and Models
,”
Wear
,
256
(
9–10
), pp.
907
917
.
101.
Shin
,
D.
, and
Hamed
,
A.
,
2016
, “
Advanced High Temperature Erosion Tunnel for Testing TBC and New Turbine Blade Materials
,”
ASME
Paper No. GT2016-57922.
102.
Goodwin
,
J. E.
,
Sage
,
W.
, and
Tilly
,
G. P.
,
1969
, “
Study of Erosion by Solid Particles
,”
Proc. Inst. Mech. Eng.
,
184
(
1
), pp.
279
292
.
103.
Bitter
,
J. G. A.
,
1963
, “
A Study of Erosion Phenomena Part I
,”
Wear
,
6
(
1
), pp.
5
21
.
104.
Henry
,
C.
, and
Minier
,
J.-P.
,
2014
, “
Progress in Particle Resuspension From Rough Surfaces by Turbulent Flows
,”
Prog. Energy Combust. Sci.
,
45
(
C
), pp.
1
53
.
105.
Sacco
,
C.
,
Bowen
,
C.
,
Lundgreen
,
R.
,
Bons
,
J. P.
,
Ruggiero
,
E.
,
Allen
,
J.
, and
Bailey
,
J.
,
2017
, “
Dynamic Similarity in Turbine Deposition Testing and the Role of Pressure
,”
ASME
Paper No. GT2017-64961.
106.
Zaba
,
T.
, and
Lombardi
,
P.
,
1984
, “
Experience in the Operation of Air Filters in Gas Turbine Installations
,”
ASME
Paper No. 84-GT-39.
107.
Tarabrin
,
A. P.
,
Schurovsky
,
V. A.
,
Bodrov
,
A. I.
, and
Stalder
,
J.-P.
,
1998
, “
Influence of Axial Compressor Fouling on Gas Turbine Unit Performance Based on Different Schemes and With Different Initial Parameters
,”
ASME
Paper No. 98-GT-416.
108.
Syverud
,
E.
,
Brekke
,
O.
, and
Bakken
,
L. E.
,
2007
, “
Axial Compressor Deterioration Caused by Saltwater Ingestion
,”
ASME J. Turbomach.
,
129
(
1
), pp.
119
126
.
109.
Kurz
,
R.
,
Musgrove
,
G.
, and
Brun
,
K.
,
2017
, “
Experimental Evaluation of Compressor Blade Fouling
,”
ASME J. Eng. Gas Turbines Power
,
139
(
3
), p.
032601
.
110.
Vigueras Zuniga
,
M. O.
,
2007
, “
Analysis of Gas Turbine Compressor Fouling and Washing on Line
,”
Ph.D. thesis
, Cranfield University, Cranfield, UK.http://hdl.handle.net/1826/2448
111.
Carpenter
,
L. K.
,
Crouse
,
F. W.
, Jr.
, and
Halow
,
J. S.
,
1985
, “
Coal-Fueled Turbines: Deposition Research
,”
ASME
Paper No. 85-GT-213.
You do not currently have access to this content.