The accurate prediction of drag caused by bluff bodies present in aerospace applications, particularly at high angles of attack, was a challenge. An experimental and numerical investigation of a nacelle intended for fuselage-mounted aircraft engines was completed at several angles of attack between 0 deg and 45 deg with a Reynolds number of 6 × 105. Steady-flow simulations were conducted on hybrid grids using ANSYS fluent 15.0 with preference given to the realizable k–ε turbulence model. Both total drag and the pressure-to-viscous drag ratio increased with angle of attack as a consequence of greater flow separation on the suction surface. Near-field and far-field drag predictions had grid uncertainties below 2.5% and were within 10% of experiment, which were less than the uncertainties of the respective force balance and outlet traverse data at all angles of attack. Regions were defined on suction-side x-pressure force plots using the validated computational fluid dynamics (CFD) data-set that showed where and how much drag could be reduced. At 20 deg angle of attack, there was a potential to reduce up to 20% drag contained within the separated flow region.

References

1.
van Dam
,
C. P.
,
1999
, “
Recent Experience With Different Methods of Drag Prediction
,”
Prog. Aerosp. Sci.
,
35
(
8
), pp.
751
798
.
2.
Gariépy
,
M.
,
Malouin
,
B.
,
Trépanier
,
J.-Y.
, and
Laurendeau
,
É.
,
2013
, “
Far-Field Drag Decomposition Applied to the Drag Prediction Workshop 5 Cases
,”
J. Aircr.
,
50
(
6
), pp.
1822
1831
.
3.
Meredith
,
P. T.
,
1993
, “
Viscous Phenomena Affecting High-Lift Systems and Suggestions for Future CFD Development
,” The Advisory Group for Aerospace Research and Development (AGARD), Technical Report No. 94-18415-04-01.
4.
Versteeg
,
H. K.
, and
Malalasekera
,
W.
,
2007
,
An Introduction to Computational Fluid Dynamics: The Finite Volume Method
, Vol.
2
,
Pearson
, Harlow, UK.
5.
Dawes
,
W. N.
,
Dhanasekaran
,
P. C.
,
Demargne
,
A. A. J.
,
Kellar
,
W. P.
, and
Savill
,
A. M.
,
2001
, “
Reducing Bottlenecks in the CAD-to-Mesh-to-Solution Cycle Time to Allow CFD to Participate in Design
,”
ASME J. Turbomach.
,
123
(
3
), pp.
552
557
.
6.
Spalart
,
P. R.
,
2015
, “
Philosophies and Fallacies in Turbulence Modeling
,”
Prog. Aerosp. Sci.
,
74
(
4
), pp.
1
15
.
7.
Spalart
,
P. R.
, and
Allmaras
,
S. R.
,
1992
, “
A One-Equation Turbulence Model for Aerodynamic Flows
,”
AIAA
Paper No. 1992-0439.
8.
Chao
,
D. D.
, and
van Dam
,
C. P.
,
1999
, “
Airfoil Drag Prediction and Decomposition
,”
J. Aircr.
,
36
(
4
), pp.
675
681
.
9.
Mavriplis
,
D. J.
,
2003
,
Aerodynamic Drag Prediction Using Unstructured Mesh Solvers
, (Lecture Notes From the VKI Lecture Series on CFD-Based Drag Prediction and Reduction), von Karman Institute for Fluid Dynamics, Sint-Genesius-Rode, Belgium.
10.
Murayama
,
M.
,
Yamamoto
,
K.
, and
Kobayashi
,
K.
,
2006
, “
Validation of Computations Around High-Lift Configurations by Structured- and Unstructured-Mesh
,”
J. Aircr.
,
43
(
2
), pp.
395
406
.
11.
Lei
,
Z.
,
Murayama
,
M.
,
Takenaka
,
K.
, and
Yamamoto
,
K.
,
2006
, “
CFD Validation for High-Lift Devices: Two-Element Airfoil
,”
Trans. Jpn. Soc. Aeronaut. Space Sci.
,
49
(
163
), pp.
31
39
.
12.
Argyropoulos
,
C. D.
, and
Markatos
,
N. C.
,
2015
, “
Recent Advances on the Numerical Modelling of Turbulent Flows
,”
Appl. Math. Model.
,
39
(
2
), pp.
693
732
.
13.
Méheut
,
M.
, and
Bailly
,
D.
,
2008
, “
Drag-Breakdown Methods From Wake Measurements
,”
AIAA J.
,
46
(
4
), pp.
847
862
.
14.
Malouin
,
B.
,
Gariépy
,
M.
,
Trépanier
,
J.-Y.
, and
Laurendeau
,
É.
,
2015
, “
Internal Drag Evaluation for a Through-Flow Nacelle Using a Far-Field Approach
,”
J. Aircr.
,
52
(
6
), pp.
1847
1857
.
15.
Yamazaki
,
W.
,
Matsushima
,
K.
, and
Nakahashi
,
K.
,
2006
, “
Unstructured Mesh Drag Prediction Based on Drag Decomposition
,”
European Conference on Computational Fluid Dynamics
(
ECCOMAS CFD
), Egmond aan Zee, The Netherlands, Sept. 5–8.
16.
Mavriplis
,
D. J.
,
2008
, “
Third Drag Prediction Workshop Results Using the NSU3D Unstructured Mesh Solver
,”
J. Aircr.
,
45
(
3
), pp.
750
761
.
17.
Vos
,
J. B.
,
Sanchi
,
S.
, and
Gehri
,
A.
,
2013
, “
Drag Prediction Workshop 4 Results Using Different Grids Including Near-Field/Far-Field Drag Analysis
,”
J. Aircr.
,
50
(
5
), pp.
1615
1627
.
18.
Levy
,
D. W.
,
Laflin
,
K. R.
,
Tinoco
,
E. N.
,
Vassberg
,
J. C.
,
Mani
,
M.
,
Rider
,
B.
,
Rumsey
,
C.
,
Wahls
,
R. A.
,
Morrison
,
J. H.
,
Brodersen
,
O. P.
,
Crippa
,
S.
,
Mavriplis
,
D. J.
, and
Murayama
,
M.
,
2013
, “
Summary of Data From the Fifth AIAA CFD Drag Prediction Workshop
,”
AIAA
Paper No. 2013–0046.
19.
Rumsey
,
C. L.
, and
Slotnick
,
J. P.
,
2015
, “
Overview and Summary of the Second AIAA High-Lift Prediction Workshop
,”
J. Aircr.
,
52
(
4
), pp.
1006
1025
.
20.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Model for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.
21.
Celić
,
A.
, and
Hirschel
,
E. H.
,
2006
, “
Comparison of Eddy-Viscosity Turbulence Models in Flows With Adverse Pressure Gradient
,”
AIAA J.
,
44
(
10
), pp.
2156
2169
.
22.
Benini
,
E.
,
Ponza
,
R.
, and
Massaro
,
A.
,
2011
, “
High-Lift Multi-Element Airfoil Shape and Setting Optimization Using Multi-Objective Evolutionary Algorithms
,”
J. Aircr.
,
48
(
2
), pp.
683
696
.
23.
Shih
,
T.-H.
,
Liou
,
W. W.
,
Shabbir
,
A.
,
Yang
,
Z.
, and
Zhu
,
J.
,
1995
, “
A New k-ε Eddy Viscosity Model for High Reynolds Number Turbulent Flows
,”
Comput. Fluids
,
24
(
3
), pp.
227
238
.
24.
Liu
,
Y.
,
Claus
,
R.
,
Litt
,
J.
, and
Guo
,
T.-H.
,
2013
, “
Simulating Effects of High Angle of Attack on Turbofan Engine Performance
,”
AIAA
Paper No. 2013–1075.
25.
Carnevale
,
M.
,
Wang
,
F.
, and
di Mare
,
L.
,
2017
, “
Low Frequency Distortion in Civil Aero-Engine Intake
,”
ASME J. Eng. Gas Turbines Power
,
139
(
4
), p.
041203
.
26.
Larkin
,
M. J.
, and
Schweiger
,
P. S.
,
1992
, “
Ultra High Bypass Nacelle Aerodynamics Inlet Flow-Through High Angle of Attack Distortion Test
,” Pratt and Whitney Aircraft, Commercial Engine Business, East Hartford, CT, Technical Report No.
NASA CR-189149
.
27.
Brune
,
G. W.
,
1992
, “
Quantitative Three-Dimensional Low-Speed Wake Surveys
,” Boeing Commercial Airplane Co., Seattle, WA, Technical Report No.
93N27447
.
28.
Betz
,
A.
,
1925
, “
A Method for the Direct Determination of Wing-Section Drag
,” National Advisory Committee for Aeronautics, Washington, DC, Technical Report No.
NACA-TM-337
.
29.
Rogers
,
S. E.
,
Roth
,
K.
, and
Nash
,
S. M.
,
2001
, “
Validation of Computed High-Lift Flows With Significant Wind-Tunnel Effects
,”
AIAA J.
,
39
(
10
), pp.
1884
1892
.
30.
Van der Vooren
,
J.
,
2008
, “
On Drag and Lift Analysis of Transport Aircraft From Wind Tunnel Measurements
,”
Aerosp. Sci. Technol.
,
12
(
4
), pp.
337
345
.
31.
Paparone
,
L.
, and
Tognaccini
,
R.
,
2002
, “
A Method for Drag Decomposition From CFD Calculations
,” Congress of the International Council of the Aeronautical Sciences (
ICAS
), Toronto, ON, Canada, Sept. 8–13, p. 1113.
32.
Ganzevles
,
F. L. A.
,
de Bruin
,
A. C.
, and
Puffert-Meissner
,
W.
,
2002
, “
A Quantitative Analysis of Viscous and Lift-Induced Drag Components From Detailed Wake Measurements Behind a Half-Span Model
,” National Aerospace Laboratory, Marknesse, The Netherlands, Report No.
NLR-TP-2002-320
.
33.
Kusunose
,
K.
,
1998
, “
Drag Prediction Based on a Wake-Integral Method
,”
AIAA
Paper No. 98–2723.
34.
Zawislak
,
M. S.
,
2016
, “
Experimental and RANS-CFD Study of Nacelle Drag
,”
Master's thesis
, Queen's University, Kingston, ON, Canada.
35.
Gallington
,
R. W.
,
1980
, “
Measurement of Very Large Flow Angles With Non-Nulling Seven-Hole Probes
,”
International Instrumentation Symposium
, Indianapolis, IN, Apr. 27–30.
36.
Crawford
,
J.
, and
Birk
,
A. M.
,
2013
, “
Improvements to Common Data Reduction and Calibration Methods for Seven Hole Probes
,”
ASME J. Fluids Eng.
,
135
(
2
), p.
031206
.
37.
Crawford
,
J.
, and
Birk
,
A. M.
,
2013
, “
Influence of Tip Shape on Reynolds Number Sensitivity for a Seven Hole Pressure Probe
,”
ASME J. Eng. Gas Turbines Power
,
135
(
9
), p.
091602
.
38.
ANSYS
,
2013
, “
ANSYS® Release 15.0: ANSYS FLUENT User's Guide
,” Ansys Inc., Canonsburg, PA.
39.
Wolfshtein
,
M.
,
1969
, “
The Velocity and Temperature Distribution of One-Dimensional Flow With Turbulence Augmentation and Pressure Gradient
,”
Int. J. Heat Mass Transfer
,
12
(
3
), pp.
301
318
.
40.
Yakhot
,
V.
, and
Orszag
,
S. A.
,
1986
, “
Renormalization Group Analysis of Turbulence—I: Basic Theory
,”
J. Sci. Comput.
,
1
(
1
), pp.
3
51
.
41.
Celik
,
I. B.
,
Ghia
,
U.
,
Roache
,
P. J.
,
Freitas
,
C. J.
,
Coleman
,
H.
, and
Raad
,
P. E.
,
2008
, “
Procedure for Estimation and Reporting of Uncertainty Due to Discretization in CFD Applications
,”
ASME J. Fluids Eng.
,
130
(
7
), p.
078001
.
42.
Gregory-Smith
,
D. G.
,
Graves
,
C. P.
, and
Walsh
,
J. A.
,
1988
, “
Growth of Secondary Losses and Vorticity in an Axial Turbine Cascade
,”
ASME J. Turbomach.
,
110
(
1
), pp.
1
8
.
43.
Shur
,
M. L.
,
Strelets
,
M. K.
,
Travin
,
A. K.
, and
Spalart
,
P. R.
,
2015
, “
Evaluation of Vortex Generators for Separation Control in a Transcritical Cylinder Flow
,”
AIAA J.
,
53
(
10
), pp.
2967
2977
.
You do not currently have access to this content.