Full Reynolds-averaged Navier–Stokes (RANS) simulations of the flow in the near wake of a three-bladed horizontal-axis wind turbine are presented. The simulations, which are based on the model experiments in controlled conditions (MEXICO) experiment and include the complete rotor, nacelle, and tower show good agreement with experimental data, with 4% difference relative to measured flow properties. The flow properties in the near wake are detailed for both uniform and nonuniform flow conditions. The effects of increasing tip-speed ratio and a yawed inflow of 30 deg are studied. The full RANS simulations are used to support the development of an immersed wind turbine model at ETH Zurich. This model allows for modeling of the wake evolution and interactions in wind farms, for multiple turbines, with substantially reduced computational effort.

References

1.
Crespo
,
A.
,
Hernndez
,
J.
, and
Frandsen
,
S.
,
1999
, “
Survey of Modelling Methods for Wind Turbine Wakes and Wind Farms
,”
Wind Energy
,
2
, pp.
1
24
.10.1002/(SICI)1099-1824(199901/03)2:1<1::AID-WE16>3.0.CO;2-7
2.
Schepers
,
J. G.
,
2003
, “
ENDOW: Validation and Improvement of ECN's Wake Model
,”
Energy Research Center of the Netherlands
, Petten, Netherlands, Technical Report No. ECN-C–03-034.
3.
Vermeer
,
L.
,
Sørensen
,
J.
, and
Crespo
,
A.
,
2003
, “
Wind Turbine Wake Aerodynamics
,”
Prog. Aerosp. Sci.
,
39
, pp.
467
510
.10.1016/S0376-0421(03)00078-2
4.
Leishman
,
G.
,
2002
, “
Challenges in Modelling the Unsteady Aerodynamics of Wind Turbines
,”
Wind Energy
,
5
, pp.
85
132
.10.1002/we.62
5.
Jafari
,
S.
,
Chokani
,
N.
, and
Abhari
,
R. S.
,
2012
, “
An Immersed Boundary Method for Efficient Simulation of Wind Flow Over Complex Terrain
,”
ASME J. Sol. Energy Eng.
,
134
(
1
), p.
011006
.10.1115/1.4004899
6.
Jafari
,
S.
,
Chokani
,
N.
, and
Abhari
,
R. S.
,
2013
, “
Simulation of Wake Interactions in Wind Farms Using an Immersed Wind Turbine Model
,”
ASME Paper No. GT2013-96035
.
7.
Kocer
,
G.
,
Mansour
,
M.
,
Chokani
,
N.
,
Abhari
,
R. S.
, and
Müller
,
M.
,
2011
, “
Full-Scale Wind Turbine Near Wake Measurements Using an Instrumented Uninhabited Aerial Vehicle
,”
ASME J. Solar Energy Eng.
,
133
(
4
), p.
041011
.10.1115/1.4004707
8.
Schepers
,
J. G.
, and
Snel
,
H.
,
2007
, “
Model Experiments in Controlled Conditions—Final Report
,”
Energy Research Center of the Netherlands
, Petten, Netherlands, Technical Report No. ECN-E–07-042.
9.
Schepers
,
J.
,
Boorsma
,
K.
,
Bon
,
A.
,
Kim
,
C.
, and
Cho
,
T.
,
2011
, “
Results From Mexnext: Analysis of Detailed Aerodynamic Measurements on a 4.5 m Diameter Rotor Placed in the Large German Dutch Wind Tunnel DNW
,” Energy Research Center of the Netherlands, Petten, Netherlands, Technical Report No. ECN-M-11-034.
10.
Schepers
,
J. G.
,
Boorsma
,
K.
,
Cho
,
T.
,
Gomez-Iradi
,
S.
,
Schaffarczyk
,
P.
,
Jeromin
,
A.
,
Shen
W. Z.
,
Lutz
,
T.
,
Meister
,
K.
,
Stoevesandt
,
B.
,
Schreck
S.
,
Micallef
,
D.
,
Pereira
,
R.
,
Sant
,
T.
,
Madsen
,
H. A.
, and
Sørensen
,
N.
,
2012
, “
Final Report of the IEA Task 29, Mexnext (Phase 1): Analysis of Mexico Wind Tunnel Measurements
,” Energy Research Center of the Netherlands, Petten, Netherlands, Technical Report No. ECN-E-12-004.
11.
Bechmann
,
A.
,
Sørensen
,
N.
, and
Zahle
,
F.
,
2011
, “
CFD Simulations of the MEXICO Rotor
,”
Wind Energy
,
14
, pp.
677
689
.10.1002/we.450
12.
Ivanell
,
S.
,
Sorensen
,
J. N.
, and
Henningson
,
D.
,
2007
,
Numerical Computations of Wind TurbineWakes
,
Wind Energy
,
Springer
,
New York
.
13.
Barthelmie
,
R. J.
,
Hansen
,
K.
,
Frandsen
,
S. T.
,
Rathmann
,
O.
,
Schepers
,
J. G.
,
Schlez
,
W.
,
Phillips
,
J.
,
Rados
,
K.
,
Zervos
,
A.
,
Politis
,
E. S.
, and
Chaviaropoulos
,
P. K.
,
2009
, “
Modelling and Measuring Flow and Wind Turbine Wakes in Large Wind Farms Offshore
,”
Wind Energy
,
12
(
5
), pp.
431
444
.10.1002/we.348
14.
Whale
,
J.
,
Anderson
,
C. G.
,
Barreiss
,
R.
, and
Wagner
,
S.
,
2000
, “
An Experimental and Numerical Study of the Vortex Structure in the Wake of a Wind Turbine
,”
J. Wind Eng. Ind. Aerodyn.
,
84
, pp.
1
21
.10.1016/S0167-6105(98)00201-3
15.
Eggleston
,
D. M.
, and
Stoddard
,
F. S.
,
1987
,
Wind Turbine Engineering Design
,
Springer
,
New York
.
16.
Barhtelmie
,
R. J.
,
Folkerts
,
L.
,
Larsen
,
G. C.
,
Rados
,
K.
,
Pryor
,
S. C.
,
Frandsen
,
S. T.
,
Lange
,
B.
, and
Schepers
,
J. G.
,
2006
, “
Comparison of Wake Model Simulations With Offshore Wind Turbine Wake Profiles Measured by SODAR
,”
J. Atmos. Ocean. Technol.
,
23
, pp.
888
901
.10.1175/JTECH1886.1
17.
Ebert
,
P. R.
, and
Wood
,
D. H.
,
1998
, “
The Near Wake of a Model Horizontal-Axis Wind Turbine, Part II: General Features of the Three-Dimensional Flowfield
,”
Renewable Energy
,
18
, pp.
513
534
.10.1016/S0960-1481(98)00797-6
18.
Wood
,
D. H.
,
1994
, “
Simple Equations for Helical Vortex Wakes
,”
J. Aircraft
,
31
, pp.
994
995
.10.2514/3.46596
19.
Coleman
,
R. P.
,
Heingold
,
A. M.
, and
Stempin
,
C. W.
,
1945
, “
Evaluation of the Induced-Velocity Field of an Idealized Helicopter Rotor
,” NACA Report No. L5E10.
You do not currently have access to this content.