High pressure ratio turbo-expanders often put a strain on computational fluid dynamics (CFD) modeling. First of all, the working fluid is usually characterized by significant departures from the ideal behavior, thus requiring the adoption of a reliable real gas model. Moreover, supersonic flow conditions are typically reached at the nozzle vanes discharge, thus involving the formation of a shock pattern, which is in turn responsible for a strong unsteady interaction with the wheel blades. Under such circumstances, performance predictions based on classical perfect gas, steady-state calculations can be very poor. While reasonably accurate real gas models are nowadays available in most flow solvers, unsteady real gas calculations still struggle to become an affordable tool for investigating turbo-expanders. However, it is emphasized in this work how essential the adoption of a time-accurate analysis can be for accurate performance estimations. The present paper is divided in two parts. In the first part, the computational framework is validated against on-site measured performance from an existing power plant equipped with a variable-geometry nozzled turbo-expander, for different nozzle positions, and in design and off-design conditions. The second part of the paper is devoted to the detailed discussion of the unsteady interaction between the nozzle shock waves and the wheel flow field. Furthermore, an attempt is made to identify the key factors responsible for the unsteady interaction and to outline an effective way to reduce it.

References

1.
Dixon
,
S. L.
, and
Hall
,
C. A.
,
2010
,
Fluid Mechanics and Thermodynamics of Turbomachinery
, 6th ed.,
Butterworth-Heinemann, Waltham, MA.
2.
Japikse
,
D.
, and
Smith
,
G. E.
,
1986
,
Radial Turbine Design and Performance
, 3rd ed.,
Concepts ETI
,
White River Junction, VT
.
3.
Chen
,
H.
, and
Baines
,
N. C.
,
1994
, “
The Aerodynamic Loading of Radial and Mixed-Flow Turbines
,”
Int. J. Mech. Sci.
,
36
(
1
), pp.
63
79
.10.1016/0020-7403(94)90007-8
4.
Bloch
,
H.
, and
Soares
,
C.
,
2001
,
Turboexpanders and Process Applications
, 1st ed.,
Gulf Professional Publishing
, Oxford, UK.
5.
Arnone
,
A.
,
1994
, “
Viscous Analysis of Three–Dimensional Rotor Flow Using a Multigrid Method
,”
ASME J. Turbomach.
,
116
(
3
), pp.
435
445
.10.1115/1.2929430
6.
Arnone
,
A.
,
Liou
,
M. S.
, and
Povinelli
,
L. A.
,
1995
, “
Integration of Navier–Stokes Equations Using Dual Time Stepping and a Multigrid Method
,”
AIAA J.
,
33
(
6
), pp.
985
990
.10.2514/3.12518
7.
Jameson
,
A.
,
1991
, “
Time Dependent Calculations Using Multigrid, With Applications to Unsteady Flows Past Airfoils and Wings
,”
AIAA
Paper No. 91-1596.10.2514/6.1991-1596
8.
Spalart
,
P. R.
, and
Allmaras
,
S. R.
,
1994
, “
A One-Equation Turbulence Model for Aerodynamic Flows
,”
La Recherche Aérospatiale
,
1
, pp.
5
21
.
9.
Spalart
,
P. R.
, and
Shur
,
M.
,
1997
, “
On the Sensitization of Turbulence Models to Rotation and Curvature
,”
Aerosp. Sci. Technol.
,
1
(
5
), pp.
297
302
.10.1016/S1270-9638(97)90051-1
10.
Shur
,
M. L.
,
Strelets
,
M. K.
,
Travin
,
A. K.
, and
Spalart
,
P. R.
,
2000
, “
Turbulence Modeling in Rotating and Curved Channels: Assessing the Spalart-Shur Correction
,”
AIAA J.
,
38
(
5
), pp.
784
792
.10.2514/2.1058
11.
Marconcini
,
M.
,
Rubechini
,
F.
,
Arnone
,
A.
, and
Ibaraki
,
S.
,
2008
, “
Numerical Investigation of a Transonic Centrifugal Compressor
,”
ASME J. Turbomach.
,
130
(
1
), p.
011010
.10.1115/1.2752186
12.
Marconcini
,
M.
,
Rubechini
,
F.
,
Arnone
,
A.
,
Scotti Del Greco
,
A.
, and
Biagi
,
R.
,
2012
, “
Aerodynamic Investigation of a High Pressure Ratio Turbo-Expander for Organic Rankine Cycle Applications
,”
ASME
Paper No. GT2012-69409.10.1115/GT2012-69409
13.
Arnone
,
A.
,
Liou
,
M. S.
, and
Povinelli
,
L. A.
,
1992
, “
Navier–Stokes Solution of Transonic Cascade Flow Using Non–Periodic C–Type Grids
,”
J. Propul. Power
,
8
(
2
), pp.
410
417
.10.2514/3.23493
14.
Arnone
,
A.
,
Carnevale
,
E.
, and
Marconcini
,
M.
,
1997
, “
Grid Dependency Study for the NASA Rotor 37 Compressor Blade
,” ASME Paper No. 97–GT–384.
15.
Pacciani
,
R.
,
Rubechini
,
F.
,
Arnone
,
A.
, and
Lutum
,
E.
,
2012
, “
Calculation of Steady and Periodic Unsteady Blade Surface Heat Transfer in Separated Transitional Flow
”.
ASME J. Turbomach.
,
134
(
6
), p.
061037
.10.1115/1.4006312
16.
Schmitt
,
S.
,
Eulitz
,
F.
,
Wallscheid
,
L.
,
Arnone
,
A.
, and
Marconcini
,
M.
,
2001
, “
Evaluation of Unsteady CFD Methods by Their Application to a Transonic Propfan Stage
,” ASME Paper No. 2001-GT-310.
17.
Bonaiuti
,
D.
,
Arnone
,
A.
,
Hah
,
C.
, and
Hayami
,
H.
,
2002
, “
Development of Secondary Flow Field in a Low Solidity Diffuser in a Transonic Centrifugal Compressor Stage
,”
ASME
Paper No. GT2002-30371.10.1115/GT2002-30371
18.
Marconcini
,
M.
,
Rubechini
,
F.
,
Arnone
,
A.
, and
Ibaraki
,
S.
,
2010
, “
Numerical Analysis of the Vaned Diffuser of a Transonic Centrifugal Compressor
,”
ASME J. Turbomach.
,
132
(
4
), p.
041012
.10.1115/1.2988481
19.
Boncinelli
,
P.
,
Rubechini
,
F.
,
Arnone
,
A.
,
Cecconi
,
M.
, and
Cortese
,
C.
,
2004
, “
Real Gas Effects in Turbomachinery Flows: a CFD Model for Fast Computations
,”
ASME J. Turbomach.
,
126
(
2
), pp.
268
276
.10.1115/1.1738121
20.
Rubechini
,
F.
,
Marconcini
,
M.
,
Arnone
,
A.
,
Cecchi
,
S.
, and
Dacca
,
F.
,
2007
, “
Some Aspects of CFD Modeling in the Analysis of a Low-Pressure Steam Turbine
,”
ASME
Paper No. GT2007-27235.10.1115/GT2007-27235
21.
Huber
,
M. L.
,
2007
, “
NIST Thermophysical Properties of Hydrocarbon Mixtures Database (SUPERTRAPP) Version 3.2—Users' Guide
,” National Institute of Standards and Technology, Gaithersburg, MD.
22.
Van Zante
,
D. E.
,
Chen
,
J. P.
,
Hathaway
,
T. H.
, and
Randall
,
C.
,
2008
, “
The Influence of Compressor Blade Row Interaction Modeling on Performance Estimates From Time-Accurate, Multistage, Navier–Stokes Simulations
,”
ASME J. Turbomach.
,
130
(
1
), p.
011009
.10.1115/1.2775486
23.
Suresh
,
A.
,
Hofer
,
D. C.
, and
Tangirala
,
V. E.
,
2012
, “
Turbine Efficiency for Unsteady, Periodic Flows
,”
ASME J. Turbomach.
,
134
(
3
), p.
034501
.10.1115/1.4003246
24.
Tyler
,
J. M.
, and
Sofrin
,
T. G.
,
1962
, “
Axial Flow Compressor Noise Studies
,”
SAE Trans.
,
70
, pp.
309
332
.
You do not currently have access to this content.