In this paper, a thorough flow simulation of a small turbojet engine has been carried out to predict the engine performance as a result of water injected at the compressor inlet. Wet compression will not only change compressor performance characteristic map, but also has effects on both the combustor and the turbine sections. The match between the turbojet engine components, that is the compressor, combustor and turbine, will shift to a new operating point. In this paper, we present a steady-state numerical simulation of the entire gas turbine with wet compression in order to evaluate the effects on the gas turbine performance. Compared with the dry case, the results of wet cases show increased values of compressor compression ratios, turbine expansion ratios, intake mass flowrates, and engine thrusts including a decreased amount of specific fuel consumption. The wet compression reduces NOx production in the combustor, which is also simulated and with results presented. The study also indicates that the water mass flow rate and droplet diameter are key factors impacting the engine performance.

References

1.
World Energy Outlook
,
2010
, International Energy Agency, http://www.worldenergyoutlook.org/
2.
Jonsson
,
M.
, and
Yan
,
J.
,
2005
, “
Humidified Gas Turbines—A Review of Proposed and Implemented Cycles
,”
Energy
,
30
, pp.
1013
1078
.10.1016/j.energy.2004.08.005
3.
Chaker
,
M. A.
,
Meher-Homji
,
C. B.
, and
Mee
,
T. R.
, III
,
2004
, “
Inlet Fogging of Gas Turbine Engines—Part A: Fog Droplet Thermodynamics, Heat Transfer and Practical Considerations
,”
ASME J. Eng. Gas Turbines Power
,
126
, pp.
545
558
.10.1115/1.1712981
4.
Chaker
,
M. A.
,
Meher-Homji
,
C. B.
, and
Mee
,
T. R.
, III
,
2004
, “
Inlet Fogging of Gas Turbine Engines—Part B: Fog Droplet Sizing Analysis, Nozzle Types, Measurement and Testing
,”
ASME J. Eng. Gas Turbines Power
,
126
, pp.
559
570
.10.1115/1.1712982
5.
Chaker
,
M. A.
,
Meher-Homji
,
C. B.
, and
Mee
,
T. R.
, III
,
2004
, “
Inlet Fogging of Gas Turbine Engines—Part C: Fog Behavior in Inlet Ducts, CFD Analysis and Wind Tunnel Experiments
,”
ASME J. Eng. Gas Turbines Power
,
126
, pp.
571
580
.10.1115/1.1712983
6.
Bhargava
,
R. K.
,
Meher-Homji
,
C. B.
,
Chaker
,
M. A.
,
Peretto
,
A.
,
Bianchi
,
M.
,
Melino
,
F.
, and
Ingistov
,
S.
,
2007
, “
Gas Turbine Fogging Technology—A State-of-the-Art Review, Part I: Inlet Evaporative Fogging—Analytical and Experimental Aspects
,”
ASME J. Eng. Gas Turbines Power
,
129
, pp.
71
82
.10.1115/1.2364003
7.
Bhargava
,
R. K.
,
Meher-Homji
,
C. B.
,
Chaker
,
M. A.
,
Peretto
,
A.
Bianchi
,
M.
,
Melino
,
F.
, and
Ingistov
,
S.
,
2007
, “
Gas Turbine Fogging Technology—A State-of-the-Art Review, Part II: Overspray Fogging—Analytical and Experimental Aspects
,”
ASME J. Eng. Gas Turbines Power
,
129
, pp.
83
90
.10.1115/1.2364004
8.
Bhargava
,
R. K.
,
Meher-Homji
,
C. B.
,
Chaker
,
M. A.
,
Peretto
,
A.
,
Bianchi
,
M.
,
Melino
,
F.
, and
Ingistov
,
S.
,
2007
, “
Gas Turbine Fogging Technology—A State-of-the-Art Review, Part III: Practical Considerations and Operational Experience
,”
ASME J. Eng. Gas Turbines Power
,
129
, pp.
215
226
.10.1115/1.2364005
9.
Bianchi
,
M.
,
Melino
,
F.
,
Peretto
,
A.
,
Spina
,
P. R.
,
Bhargava
,
R.
, and
Ingistov
,
S.
,
2004
, “
A Parametric Study of Interstage Injection on GE Frame 7EA Gas Turbine
,”
ASME
Paper No. GT2004-53042.10.1115/GT2004-53042
10.
Bagnoli
,
M.
,
Bianchi
,
M.
,
Melino
,
F.
, and
Spina
,
P. R.
,
2006
, “
Development and Validation of a Computational Code for Wet Compression Simulation of Gas Turbines
,”
ASME
Paper No. GT2006-90342.10.1115/GT2006-90342
11.
Bagnoli
,
M.
,
Bianchi
,
M.
,
Melino
,
F.
,
Spina
,
P. R.
,
Ingistov
,
S.
, and
Bhargava
,
R.
,
2006
, “
Application of a Computational Code to Simulate Interstage Injection Effects on GE Frame 7EA Gas Turbine
,”
ASME
Paper No. GT2006-90343.10.1115/GT2006-90343
12.
Zheng
,
Q.
,
Sun
,
Y.
,
Li
,
S.
, and
Wang
,
Y.
,
2002
, “
Thermodynamic Analyses on Wet Compression Process in the Compressor of Gas Turbine
,”
ASME
Paper No. GT2002-30590.10.1115/GT2002-30590
13.
Zheng
,
Q.
,
Li
,
M.
, and
Sun
,
Y.
,
2003
, “
Thermodynamic Performance of Wet Compression and Regenerative (WCR) Gas Turbine
,”
ASME
Paper No. GT2003-38517.10.1115/GT2003-38517
14.
Horlock
,
J. H.
,
2001
, “
Compressor Performance With Water Injection
,” ASME Turbo Expo 2001, New Orleans, LA, June 4–7, ASME Paper No. 2001-GT-0343.
15.
Härtel
,
C.
, and
Pfeiffer
,
P.
,
2003
, “
Model Analysis of High-Fogging Effects on the Work of Compression
,” ASME Paper No. GT2003-38117.
16.
White
,
A. J.
, and
Meacock
,
A. J.
,
2003
, “
An Evaluation of the Effects of Water Injection on Compressor Performance
,”
ASME
Paper No. GT2003-38237.10.1115/GT2003-38237
17.
Wang
,
T.
, and
Khan
,
J. R.
,
2008
, “
Overspray and Interstage Fog Cooling in Compressor Using Stage Stacking Scheme—Part 1: Development of Theory and Algorithm
,”
ASME
Paper No. GT2008-50322.10.1115/GT2008-50322
18.
Wang
,
T.
, and
Khan
,
J. R.
,
2008
, “
Overspray and Interstage Fog Cooling in Compressor Using Stage Stacking Scheme—Part 2: A Case Study
,”
ASME
Paper No. GT2008-50323.10.1115/GT2008-50323
19.
Khan
,
J. R.
, and
Wang
,
T.
,
2009
, “
Overspray Fog Cooling in Compressor Using Stage-Stacking Scheme With Non-Equilibrium Heat Transfer Model for Droplet Evaporation
,”
ASME
Paper No. GT2009-59590.10.1115/GT2009-59590
20.
Matz
,
C.
,
Kappis
,
W.
,
Cataldi
,
G.
,
Mundinger
,
G.
,
Bischoff
,
S.
,
Helland
,
E.
, and
Ripken
,
M.
,
2008
, “
Prediction of Evaporative Effects Within the Blading of an Industrial Axial Compressor
,”
ASME
Paper No. GT2008-50166.10.1115/GT2008-50166
21.
Zheng
,
Q.
,
Shao
,
Y.
, and
Zhang
,
Y.
,
2006
, “
Numerical Simulation of Aerodynamic Performances of Wet Compression Compressor Cascade
,”
ASME
Paper No. GT2006-91125.10.1115/GT2006-91125
22.
Sun
,
L.
,
Li
,
Y.
,
Zheng
,
Q.
, and
Bhargava
,
R.
,
2008
, “
The Effects of Wet Compression on the Separated Flow in a Compressor Stage
,”
ASME
Paper No. GT2008-50920.10.1115/GT2008-50920
23.
Sun
,
L.
,
Zheng
,
Q.
,
Luo
,
M.
,
Li
,
Y.
, and
Bhargava
,
R.
,
2010
, “
Understanding Behavior of Water Droplets in a Transonic Compressor Rotor With Wet Compression
,”
ASME
Paper No. GT2010-23141.10.1115/GT2010-23141
24.
Luo
,
M.
,
Zheng
,
Q.
,
Sun
,
L.
,
Deng
,
Q.
,
Li
,
S.
,
Liu
,
C.
, and
Bhargava
,
R.
,
2011
, “
The Numerical Simulation of Inlet Fogging Effects on the Stable Range of a Transonic Compressor Stage
,”
ASME
Paper No. GT2011-46124.10.1115/GT2011-46124
25.
Payne
,
R. C.
, and
White
,
A. J.
,
2007
, “
Three-Dimensional Calculations of Evaporative Flow in Compressor Blade Rows
,”
ASME
Paper No. GT2007-27331.10.1115/GT2007-27331
26.
Williams
,
J.
, and
Young
,
J. B.
,
2006
, “
Movement of Deposited Water on Turbomachinery Rotor Blade Surfaces
,”
ASME
Paper No. GT2006-90792.10.1115/GT2006-90792
27.
Schlüter
,
J.
,
Apte
,
S.
,
Kalitzin
,
G.
,
Pitsch
,
H.
,
van der Weide
,
E.
, and
Alonso
,
J.
,
2006
, “
Unsteady CFD Simulation of an Entire Gas Turbine High-Spool
,”
ASME
Paper No. GT2006-90090.10.1115/GT2006-90090
28.
Medic
,
G.
,
Kalitzin
,
G.
,
You
,
D.
,
Herrmann
,
M.
,
Ham
,
F.
,
van der Weide
,
E.
, and
Alonso
,
J.
,
2006
, “
Integrated RANS/LES Computations of Turbulent Flow through a Turbofan Jet Engine
,” NASA CTR Annual Research Briefs, pp.
275
285
.
29.
Reed
,
J. A.
,
Turner
,
M. G.
,
Norris
,
A.
, and
Veres
,
J. P.
,
2003
, “
Towards an Automated Full-Turbofan Engine Numerical Simulation
,” NASA TM-2003-212494.
30.
Turner
,
M. G.
,
Reed
,
J. A.
,
Ryder
,
R.
, and
Veres
,
J. P.
,
2004
, “
Multi-Fidelity Simulation of a Turbofan Engine With Results Zoomed into Mini-Maps for a Zero-D Cycle Simulation
,”
ASME
Paper No. GT2004-53956.10.1115/GT2004-53956
31.
Warnatz
,
J.
,
Mass
,
U.
, and
Dibble
,
R. W.
,
1996
,
Combustion
,
Springer-Verlag
,
New York
, pp.
219
221
.
You do not currently have access to this content.