A computational preliminary design tool has been developed to help simulate drop-related processes that take place in an oil sump of a gas turbine engine accounting for drop motion, deformation, breakup, and drop∕wall interactions including wall film impact and potential splashing. Aerodynamic interactions with the gas phase are considered using an exact solution of the Navier–Stokes equations to approximate the annular gas flow. Detailed results for the baseline case that attempts to replicate the conditions found in a typical oil sump of a turbofan engine are presented. In addition, the results of more general parametric studies utilizing a simplified geometry that investigated the effects of changing various parameters are discussed.

1.
Radocaj
,
D.
, 2001, “
Characterization of a Simple Aero Engine Sump Geometry
,” M.S. thesis, Purdue University, West Lafayette, IN.
2.
Shimo
,
M.
, 2001, “
Modeling of Oil Film Behavior on a Seal Runner and Sump Wall
,” M.S. thesis, Purdue University, West Lafayette, IN.
3.
Weinstock
,
V. D.
, 2001, “
Modeling of Drop Trajectories and Drop∕Wall Interactions in Gas Turbine Engine Sumps
,” M.S. thesis, Purdue University, West Lafayette, IN.
4.
O’Rourke
,
P. J.
and
Amsden
,
A. A.
, 1987, “
The TAB Method for Numerical Calculation of Spray Droplet Breakup
,” SAE Paper No. 872089.
5.
Amsden
,
A. A.
,
O’Rourke
,
P. J.
, and
Butler
,
T. D.
, 1989, “
KIVA-II: A Computer Program for Chemically Reactive Flows with Sprays
,” Technical Report LA-11560-MS,
Los Alamos National Laboratory
, Los Alamos, NM.
6.
Taylor
,
G. I.
, 1963, “
The Shape and Acceleration of a Drop in a High Speed Air Stream
,”
The Scientific Papers of G. I. Taylor
,
G. K.
Batchelor
, ed.,
University Press
, Cambridge, MA, Vol.
III
.
7.
Ibrahim
,
E. A.
,
Yang
,
H. Q.
, and
Przekwas
,
A. J.
, 1993, “
Modeling of Spray Droplets Deformation and Breakup
,” AIAA
J. Propul. Power
0748-4658,
9
(
4
), pp.
651
654
.
8.
Liu
,
A. B.
and
Reitz
,
R. D.
, 1993, “
Mechanism of Air Assisted Liquid Atomization
,”
Atomization Sprays
1044-5110,
3
, pp.
55
75
.
9.
Liu
,
A. B.
,
Mather
,
D.
, and
Reitz
,
R. D.
, 1993, “
Effects of Drop Drag and Breakup on Fuel Sprays
,” SAE Paper No. 930072.
10.
Hwang
,
S. S.
,
Liu
,
Z.
, and
Reitz
,
R. D.
, 1996, “
Breakup Mechanisms and Drag Coefficients of High-Speed Vaporizing Liquid Drops
,”
Atomization Sprays
1044-5110,
6
, pp.
353
376
.
11.
Clark
,
M. M.
, 1988, “
Drop Breakup in a Turbulent Flow-I: Conceptual and Modeling Considerations
,”
Chem. Eng. Sci.
0009-2509,
43
(
3
), pp.
671
679
.
12.
Pham
,
T. L.
, 2000, “
A Computational Tool for Spray Modeling Using Lagrangian Droplet Tracking in a Homogeneous Flow Model
,” Ph.D. dissertation, Purdue University, West Lafayette, IN.
13.
Dai
,
Z.
, and
Faeth
,
G. M.
, 2001, “
Temporal Properties of Secondary Drop Breakup in the Multimode Breakup Regime
,”
Int. J. Multiphase Flow
0301-9322,
27
, pp.
217
236
.
14.
Ranger
,
A. A.
, and
Nicholls
,
J. A.
, 1969, “
The Aerodynamic Shattering of Liquid Drops
,”
AIAA J.
0001-1452,
7
, pp.
285
290
.
15.
Naber
,
J. D.
, and
Reitz
,
R. D.
, 1988, “
Modeling Engine Spray∕Wall Impingement
,” SAE Paper No. 880107.
16.
Bai
,
C.
, and
Gosman
,
A. D.
, 1995, “
Development of Methodology for Spray Impingement Simulation
,” SAE Paper No. 950283.
17.
Stanton
,
D. W.
, and
Rutland
,
C. J.
, 1996, “
Modeling Fuel Film Formation and Wall Interaction in Diesel Engines
,” SAE Paper No. 960628.
18.
Stanton
,
D. W.
, and
Rutland
,
C. J.
, 1998, “
Multi-Dimensional Modeling of Heat and Mass Transfer of Fuel Films Resulting from Impinging Sprays
,” SAE Paper No. 980132.
19.
Mundo
,
C.
,
Sommerfeld
,
M.
, and
Tropea
,
C.
, 1997, “
Numerical and Experimental Investigation of Spray Characteristics in the Vicinity of a Rigid Wall
,”
Exp. Therm. Fluid Sci.
0894-1777,
15
, pp.
228
237
.
20.
Mundo
,
C.
,
Sommerfeld
,
M.
, and
Tropea
,
C.
, 1998, “
On the Modeling of Liquid Sprays Impinging on Surfaces
,”
Atomization Sprays
1044-5110,
8
, pp.
625
652
.
21.
Roisman
,
I. V.
,
Araneo
,
L.
,
Marengo
,
M.
, and
Tropea
,
C.
, 1999, “
Evaluation of Drop Impingement Models: Experimental and Numerical Analysis of a Spray Impact
,”
Thirteenth Annual Conference on Liquid Atomization and Spray Systems ILASS-Europe
, Florence, Italy.
22.
Tropea
,
C.
, and
Roisman
,
I. V.
, 2000, “
Modeling of Spray Impact on Solid Surfaces
,”
Atomization Sprays
1044-5110,
10
, pp.
387
408
.
23.
O’Rourke
,
P. J.
, and
Amsden
,
A. A.
, 2000, “
A Spray∕Wall Interaction Submodel for the KIVA-3 Wall Film Model
,” SAE Paper No. 2000-01-0271.
24.
Stow
,
C. D.
, and
Stainer
,
R. D.
, 1977, “
The Physical Products of a Splashing Water Drop
,”
J. Meteorol. Soc. Jpn.
0026-1165,
55
(
5
), pp.
518
532
.
25.
Wachters
,
L. H. J.
, and
Westerling
,
N. A. J.
, 1966, “
The Heat Transfer from a Hot Wall to Impinging Water Drops in the Spheroidal State
,”
Chem. Eng. Sci.
0009-2509,
21
, pp.
1047
1056
.
26.
Jayaratne
,
O. W.
, and
Mason
,
B. J.
, 1964, “
The Coalescence and Bouncing of Water Drops at an Air∕Water Interface
,”
Proc. R. Soc. London, Ser. A
1364-5021,
280
, pp.
545
565
.
27.
Rodriguez
,
F.
, and
Mesler
,
R.
, 1985, “
Some Drops Don’t Splash
,”
J. Colloid Interface Sci.
0021-9797,
106
(
2
), pp.
347
352
.
28.
Kolpakov
,
A. V.
,
Romanov
,
K. V.
, and
Titova
,
E. I.
, 1985, “
Calculation of the Conditions for Rebound Upon Collisions Between Droplets of Different Sizes
,”
Colloid J. USSR
0010-1303,
47
, pp.
817
820
.
29.
Mundo
,
C.
,
Sommerfeld
,
M.
, and
Tropea
,
C.
, 1995, “
Droplet-Wall Collisions: Experimental Studies of the Deformation and Breakup Process
,”
Int. J. Multiphase Flow
0301-9322,
21
(
2
), pp.
151
173
.
30.
Yarin
,
A. L.
, and
Weiss
,
D. A.
, 1995, “
Impact of Drops on Solid Surfaces: Self-Similar Capillary Waves, and Splashing as a New Type of Kinematic Discontinuity
,”
J. Fluid Mech.
0022-1120,
283
, pp.
141
173
.
31.
Lefebvre
,
A. H.
, 1989,
Atomization and Sprays
,
Hemisphere Publishing
, New York.
You do not currently have access to this content.