Abstract

This paper presents component and system-level analyses to understand the stiffness, damping, and rotor stability effects of tilting pad journal bearings (TPJB) with assembled clearance variation across pads. This variation results from a normal manufacturing process of the bearing components, i.e., shaft, bearing shell, pad radius, and pad thickness, whose machining tolerances add in a closed-loop producing a different assembled clearance per pad. The results are compared to the standard analysis practice of uniformly setting all pads assembled clearance to its maximum and minimum stack-up values to find the worst case for stability. The component-level analysis follows a rigid rotor approach. While in the system-level analysis, a full rotor-bearings-seals model of a lightweight, high-speed centrifugal compressor is employed. A four-pad TPJB with a load between pads (LBP) configuration is considered. Large differences in stiffness and log dec are encountered, while almost negligible differences are found in damping. Also, some interesting observations related to rotor-bearing planar mode shapes are reported when the bearing pads have dissimilar assembled clearances. These modes disappear once the labyrinth seal force coefficients are incorporated into the full model.

References

1.
Pennacchi
,
P.
,
2017
, “
Introduction of Advanced Technologies for Steam Turbine Bearings
,”
Advances in Steam Turbines for Modern Power Plants
,
T.
Tanuma
ed.,
Woodhead Publishing
,
Duxford, UK
.
2.
API 617
,
2014
,
Axial and Centrifugal Compressors and Expander-Compressors
, 8th ed.,
American Petroleum Institute
,
Washington, DC
.
3.
ISO 10439-1:2015
,
2015
,
Petroleum, Petrochemical and Natural Gas Industries—Axial and Centrifugal Compressors and Expander-Compressors—Part 1: General Requirements
,
International Standard Organization
,
Geneva, Switzerland
.
4.
API RP 684
,
2005
,
API Standard Paragraphs Rotodynamic Tutorial: Lateral Critical Speeds, Unbalance Response, Stability, Train Torsional and Rotor Balancing
, 2nd ed.,
American Petroleum Institute
,
Washington, DC
.
5.
Gomez
,
J. L.
,
Pineda
,
S.
, and
Diaz
,
S. E.
,
2013
, “
On the Effect of Pad Clearance and Preload Manufacturing Tolerances on Tilting Pad Bearings Rotordynamic Coefficients
,”
ASME
Paper No. GT201395214. 10.1115/GT201395214
6.
Quintini
,
J. C. R.
,
Pineda
,
S.
,
Matute
,
J. A.
,
Medina
,
L. U.
,
Gómez
,
J. L.
, and
Diaz
,
S. E.
,
2014
, “
Determining the Effect of Bearing Clearance and Preload Uncertainties on Tilting Pad Bearings Rotordynamic Coefficients
,”
ASME
Paper No. GT201426773. 10.1115/GT201426773
7.
Dang
,
P.
,
Chatterton
,
S.
,
Pennacchi
,
P.
,
Vania
,
A.
, and
Cangioli
,
F.
,
2016
, “
Behavior of Tilting-Pad Journal Bearings With Large Machining Error on Pads
,”
ASME
Paper No. GT201656674.10.1115/GT2016-56674
8.
Dang
,
P. V.
,
Chatterton
,
S.
,
Pennacchi
,
P.
, and
Vania
,
A.
,
2018
, “
Numerical Investigation of the Effect of Manufacturing Errors in Pads on the Behaviour of Tilting-Pad Journal Bearings
,”
Proc. IMechE Part J: J. Eng. Tribol.
,
232
(
4
), pp.
480
500
.10.1177/1350650117721118
9.
Dang
,
P. V.
,
Chatterton
,
S.
,
Pennacchi
,
P.
, and
Vania
,
A.
,
2016
, “
Effect of the Load Direction on Non-Nominal Five-Pad Tilting Pad Journal Bearings
,”
Tribol. Int.
,
98
, pp.
197
211
.10.1016/j.triboint.2016.02.028
10.
Delgado
,
A.
,
Vanini
,
G.
,
Ertas
,
B.
,
Drexel
,
M.
, and
Naldi
,
L.
,
2011
, “Identification and Prediction of Force Coefficients in a Five-Pad and Four-Pad Tilting Pad Bearing for Load-on-Pad and Load-Between-Pad Configurations,”
ASME J. Eng. Gas Turbines Power
,
133
(
9
), p. 092503.10.1115/1.4002864
11.
Pereira da Silva
,
H. A.
, and
Nicoletti
,
R.
,
2019
, “
Design of Tilting-Pad Journal Bearings Considering Bearing Clearance Uncertainty and Reliability Analysis
,”
ASME J. Tribol.
,
141
(
1
), p. 011703.10.1115/1.4041021
12.
Urbiola-Soto
,
L.
,
2021
, “
Influence of Manufacturing Variation on the Dynamic and Tribological Performance of Tilting Pad Journal Bearings
,”
ASME J. Eng. Gas Turbines Power
,
143
(
6
), p.
061017
.10.1115/1.4049205
13.
Zeidan
,
F. Y.
, and
Herbage
,
B. S.
,
1991
,
Fluid Film Bearing Fundamentals and Failure Analysis
,
Texas A&M University, Turbomachinery Laboratories
,
College Station, TX
.
14.
Pyzdek
,
T.
, and
Keller
,
P. A.
,
2010
,
The Six-Sigma Handbook
, 3rd ed.,
McGraw-Hill Inc
.,
New York
.
15.
Murphy
,
B. T.
,
2018
,
XLHydrodynTM Spreadsheets for Rotordynamic Analysis
,
Rotating Machinery Analysis, Inc
,
Brevard, NC
, Version 5.53.
16.
Kirk
,
R. G.
, and
Reedy
,
S. W.
,
1988
, “
Evaluation of Pivot Stiffness for Typical Tilting-Pad Journal Bearing Designs
,”
ASME J. Vib. Acoust. Stress Reliab.
,
110
(
2
), pp.
165
171
.10.1115/1.3269494
17.
Brockwell
,
K.
,
Kleinbub
,
D.
, and
Dmochowski
,
W.
,
1990
, “
Measurement and Calculation of the Dynamic Operating Characteristics of the Five Shoe
,”
Tilting Pad J. Bear., 1990, STLE Tribol. Trans.
,
33
(
4
), pp.
481
492
.10.1080/10402009008981979
18.
Vance
,
J.
,
Murphy
,
B.
, and
Zeidan
,
Y.
,
2010
,
Machinery Vibration and Rotordynamics
, 1st Ed,
Wiley
,
Hoboken, NJ
.
19.
Ertas
,
B.
, and
Vance
,
J.
,
2007
, “
The Influence of Same-Sign Cross-Coupled Stiffness on Rotordynamics
,”
ASME J. Vib. Acoust.
,
129
(
1
), pp.
24
31
.10.1115/1.2346690
20.
Bloch
,
H.
,
1998
,
Improving Machinery Reliability
, 3rd ed.,
Gulf Professional Publishing
,
Houston, TX
.
21.
Pettinato
,
B. C.
,
Cloud
,
C. H.
, and
da Silva
,
R.
,
2010
, “
Shop Acceptance Testing of Compressor Rotordynamic Stability and Theoretical Correlation
,”
Proceedings of 39th Turbomachinery Symposium
,
Texas A&M University
,
College Station, TX
, Oct. 4–7, pp.
31
42
.10.21423/R1WS9P
22.
AGES-SP-05-002
,
2020
,
Centrifugal Compressor Specification
,
Abu Dhabi National Oil Company
, Rev. 1,
Abu Dhabi, UAE
.
23.
Atkins
,
K. E.
, and
Perez
,
R. X.
,
1992
, “
Assessing Rotor Stability Using Practical Test Procedures
,”
Proceedings of 21st Turbomachinery Symposium
,
Texas A&M University
,
Houston, TX
, Oct. 4–7, pp.
151
160
.10.21423/R1TM19
You do not currently have access to this content.